

Reverend Thomas Bayes, 1701–1761

Bayes's rule for random variables

For any pair of random variables (*X*, *Y*)

$$\Pr_X(x|Y=y) = \Pr_X(x) \frac{\Pr_Y(y|X=x)}{\Pr_Y(y)}$$

Bayesianism

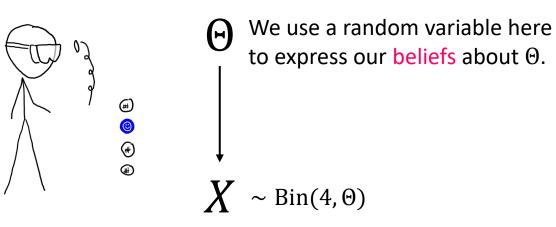
Whenever there's an unknown parameter, you should express your uncertainty about it by treating it as a random variable.

I tossed four coins and got one head. What is it reasonable to infer about the probability of heads (call it θ)?

- "The maximum likelihood estimator is $\hat{\theta} = 25\%$, unjustified! thus the true probability of heads is 25%" (hence if I tossed millions more coins that's the fraction of heads I'd see)
- "All we know for certain is that $0 < \theta < 1$ " logical, but useless!
- ???

Bayesianists represent their uncertainty about an unknown parameter by using a random variable.

probability of heads, unknown



number of heads from 4 coin tosses

 $Pr_{\Theta}(\theta)$ is called the prior.

We might choose $\Theta \sim U[0,1]$

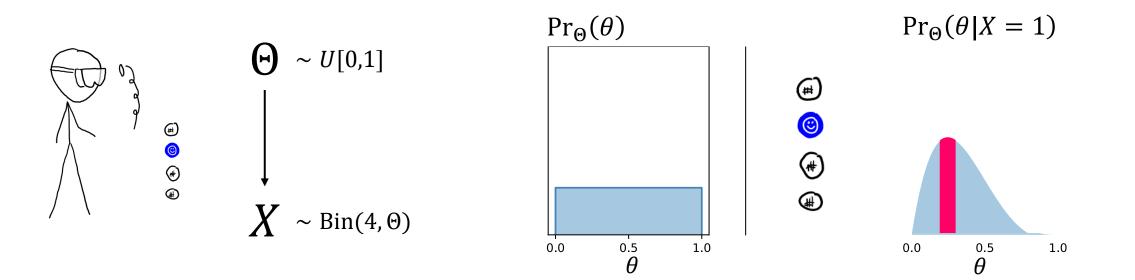
to express ignorance about Θ .

It expresses our beliefs prior to having seen this data.

$Pr_{\Theta}(\theta|X=1)$ is called the posterior.

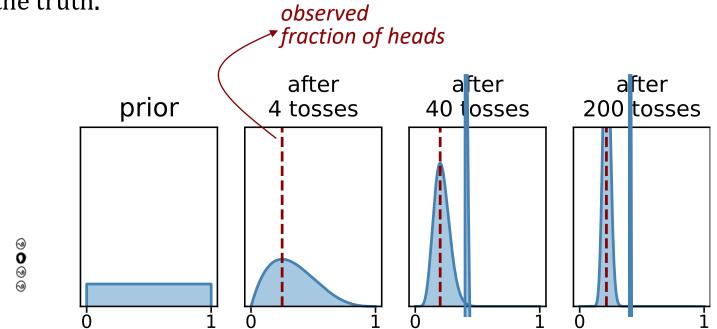
It expresses our beliefs about Θ in the light of the data.

By using random variables for unknown quantities, we can reason about confidence.

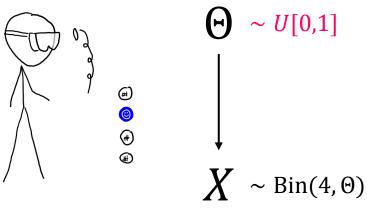


This Bayesianist approach lets us say something justifiable *and* useful: for example, " $\mathbb{P}(\Theta \in [.2, .3] | \text{data}) = 21\%$ ".

Typically, the more data you have, the closer the posterior gets to the truth.



You *must* have a prior belief about every unknown parameter. You *must* choose it before seeing the dataset in question.

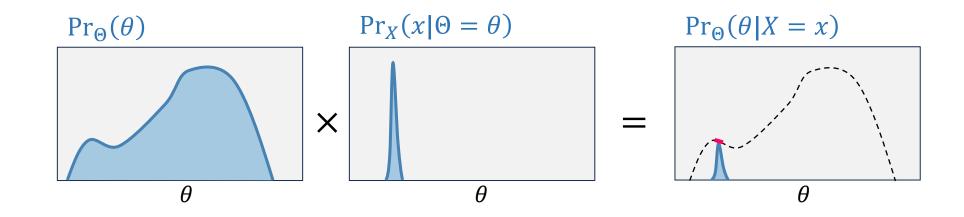


But where does the prior come from?

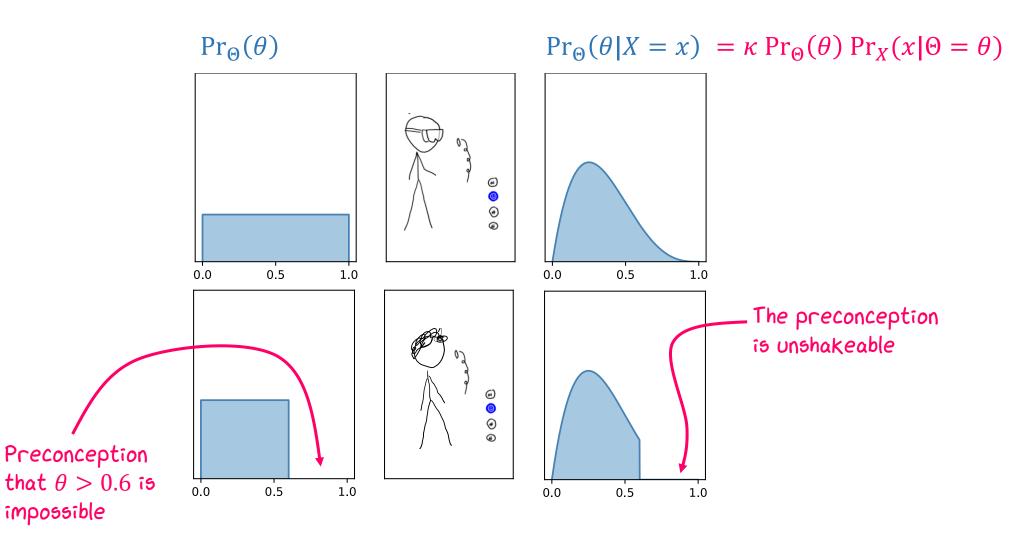
It comes from what you know already — it's how you can integrate your existing knowledge into your modelling.

Often, with lots of data, the prior doesn't make much difference.

 $\Pr_{\Theta}(\theta | X = x) = \kappa \Pr_{\Theta}(\theta) \Pr_{X}(x | \Theta = \theta)$

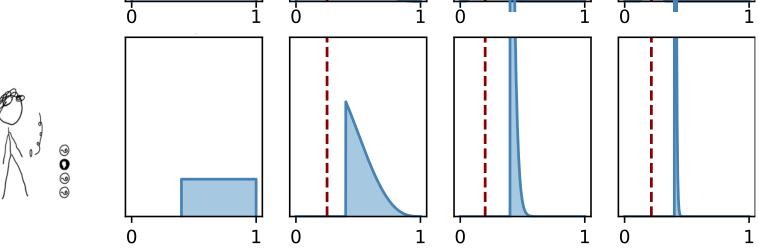


You are entitled to your own personal prior beliefs. They are entirely your choice.



§8.1

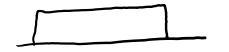
If your prior is extreme, it will be reflected in your posterior (even if there's lots of data). observed fraction of heads after after prior 40 losses 4 tosses I 0000 I Ò 0 1



after

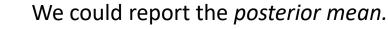
200 tosses

Prior distribution for Θ



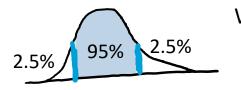
Posterior distribution for Θ

QUESTION. How should we report the posterior distribution?

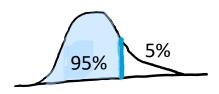


We could report the point with highest likelihood, the *MAP* or *maximum a-posteriori* estimate.

Example (Laplace smoothing). We counted x successful outcomes from n trials. Using the model $X \sim Bin(n, \Theta)$, and the prior $\Theta \sim U[0,1]$, the posterior mean of Θ is (x + 1)/(n + 2).



We could report a 95% confidence interval [lo,hi] such that $\mathbb{P}(\Theta < 1o \mid data) = 2.5\%$ $\mathbb{P}(\Theta > hi \mid data) = 2.5\%$

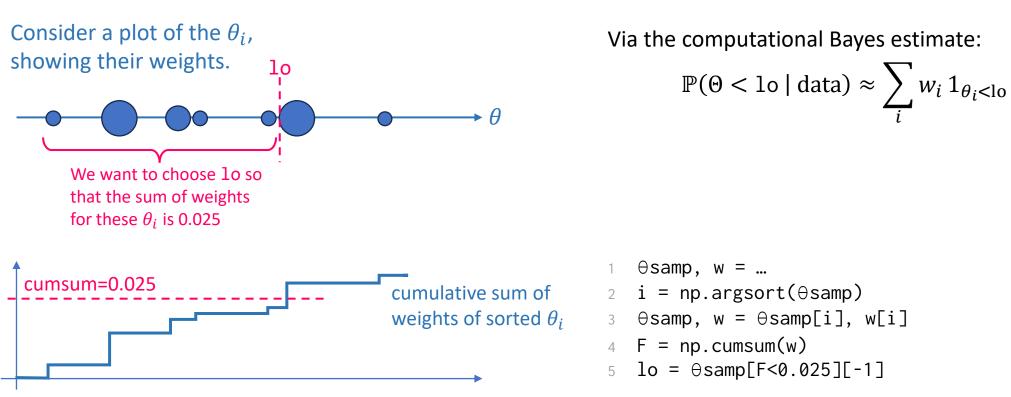


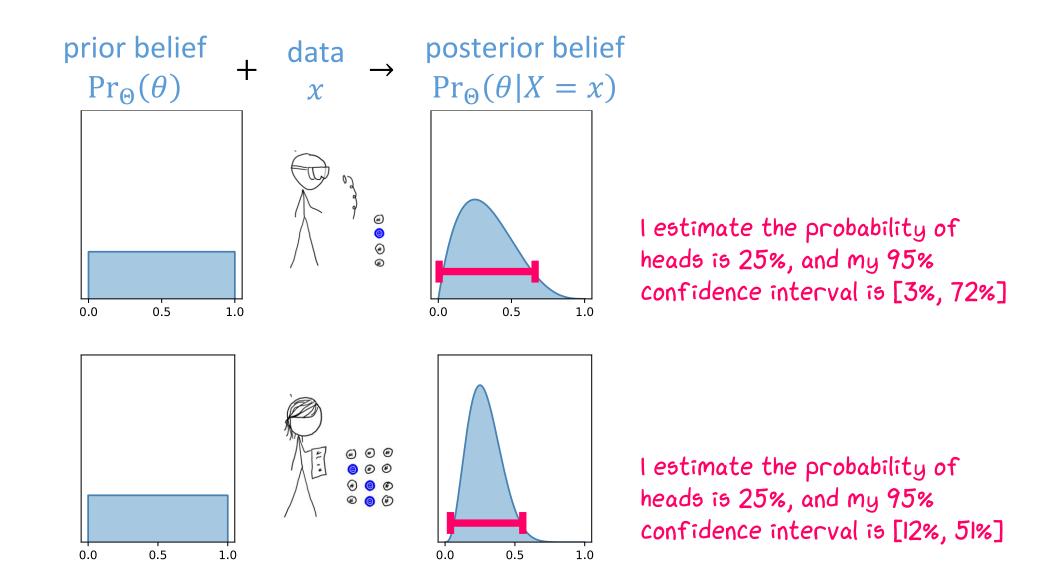
or indeed any other 95% confidence interval e.g. $lo = -\infty$ $\mathbb{P}(\Theta > hi \mid data) = 5\%$

We could report a 95% confidence interval [lo,hi] such that $\mathbb{P}(\Theta < 10 \mid data) = 2.5\%$ $\mathbb{P}(\Theta > hi \mid data) = 2.5\%$ §8.4

(though this only really works well for continuous Θ , as for discrete Θ we might not be able to hit those probabilities exactly)

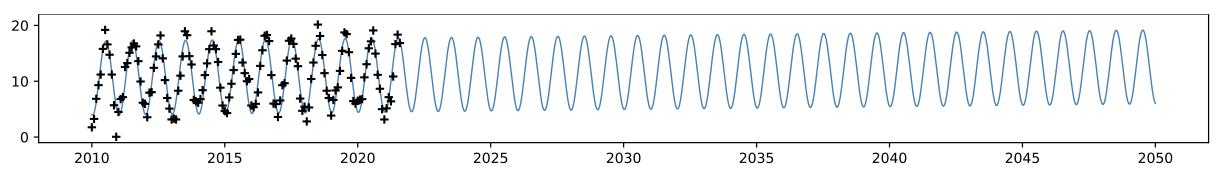
How can we compute lo and hi?





Consider the dataset of monthly average temperatures in Cambridge.

Proposed model: Temp ~ $\alpha + \beta \sin(2\pi(t + \phi)) + \gamma(t - 2000) + N(0, \sigma^2)$



If we fit this model we get the maximum likelihood estimate $\hat{\gamma} = 0.027$ °C/year.

How **confident** are we about this value?

Climate confidence challenge. Find a 95% confidence interval for γ , for Cambridge from 1985 to the present. (Use your own priors for the unknowns.)

Please submit your answer on Moodle by Monday 6 November

§8.2 Asking the right question

Whenever there's an unknown parameter, you should express your uncertainty about it by treating it as a random variable.

- Q. What don't we know?
- Q. How do we represent unknowns? Answer: As random variables, with a prior.

Q. What do we report?

Answer: The posterior distribution of the quantity of interest.

Q. How do we find this?

Answer: Using Bayes's rule.

Exercise 8.3.3 (Bayesian classification)

There are two types of expense claims, legitimate and fraudulent. The legitimate claim sizes are $\sim \text{Exp}(\lambda_L)$ and the fraudulent ones are $\sim \text{Exp}(\lambda_F)$ where $\lambda_L = 0.1$ and $\lambda_F = 0.02$. In my prior experience, 99% of claims I've seen are legitimate. A new claim comes in, for an amount £x. Is it likely to be fraudulent?

What are we uncertain about?

whether the new claim is fraudulent

How do we represent uncertainty?

Let $\Theta = \begin{cases} \ell & \text{if the new claim is legitimate} \\ f & \text{if it's fraudulent} \end{cases}$

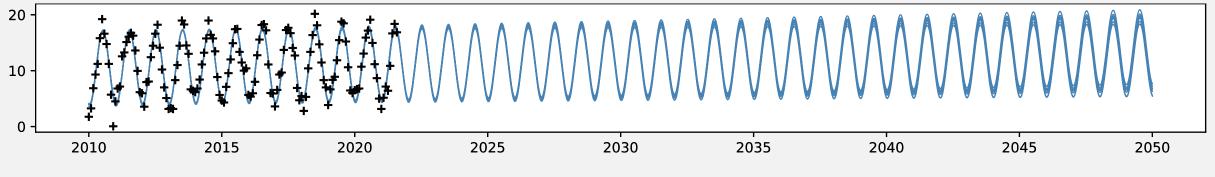
What is my prior?

 $\Pr_{\Theta}(\ell) = 0.99$ and $\Pr_{\Theta}(f) = 0.01$

What is the posterior I want to report?

 $\Pr_{\Theta}(f \mid x)$ i.e. $\mathbb{P}(\Theta = f \mid x)$ Exercise. Calculate $\mathbb{P}(\Theta = f \mid x)$. (See lecture notes for solution.)

How should we express uncertainty about *predictions*?



I've fitted the model: Temp ~ $\alpha + \beta \sin(2\pi(t + \phi)) + \gamma(t - 2000) + N(0, \sigma^2)$

I predict the temperature in January 2050 is $\operatorname{pred}(2050) = \alpha + \beta \sin(2\pi(2050 + \phi)) + 50\gamma$.

How confident am I about this prediction?

What are we uncertain about? The unknown parameters α , β , ϕ , γ , σ

How do we represent uncertainty? Treat the unknowns as random variables. Concretely, we'll generate M samples $(\alpha_i, \beta_i, \phi_i, \gamma_i, \sigma_i)$, i=1,...,M, from our chosen prior, then compute weights w_i.

What do I want to report? The posterior distribution of pred(2050).

Each sample of the parameters gives a different prediction, call it predi(2050). Each sample also has an associated weight. Use these weights to find a confidence interval for pred(2050).

Why is this the right way to compute a confidence interval for a prediction?

Let $h(\alpha, \beta, \varphi, \gamma, \sigma) = 1_{\text{pred}(2050; \alpha, \beta, \varphi, \gamma) \le \log \alpha}$

 $\mathbb{P}(\text{pred}(2050; \alpha, \beta, \varphi, \gamma) \leq \text{lo}) = \mathbb{E} \ 1_{\text{pred}(2050; \alpha, \beta, \varphi, \gamma) \leq \text{lo}}$ $= \mathbb{E} h(\overline{\alpha,\beta},\overline{\varphi,\gamma,\sigma})$

since $\mathbb{E}1_{X \in A} = \mathbb{P}(X \in A)$ by definition of *h*

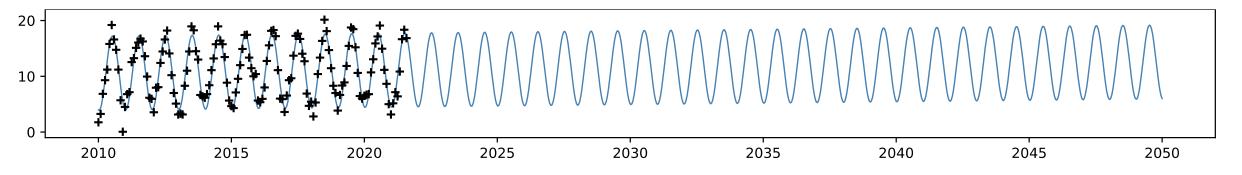
 $\approx \sum_{i=1}^{n} w_i h(\alpha_i, \beta_i, \phi_i, \gamma_i, \sigma_i)$

by Computational Bayes

 $=\sum_{i=1}^{n} w_i \operatorname{pred}_i(2050)$

where $pred_i$ is the prediction from the *i*th parameter sample

Modeller 1: Temp ~ $\alpha + \beta \sin(2\pi(t + \phi)) + \gamma(t - 2000) + N(0, \sigma^2)$ Modeller 2: Temp ~ $\alpha' + \beta' \sin(2\pi(t + \phi')) + N(0, \sigma'^2)$



What are we uncertain about? Which model is correct (and also all nine unknown parameters)

How do we represent uncertainty? With random variables.

Let M be a random variable saying which model is correct, M=1 or M=2. Invent a prior for it. Pr(data I params) = Pr(temp_1,...,temp_1 I M=m, $\alpha,\beta,\phi,\gamma,\sigma,\alpha',\beta',\phi',\sigma') = \begin{cases} \cdots & \text{if } m=1 \\ \cdots & \text{if } m=2 \end{cases}$

What do I want to report? The posterior distribution of M given the data. In other words, $\mathbb{P}(M=1 | data)$.