
COMPUTATIONAL METHODS

❖ If we want 𝔼ℎ(𝑋) but the maths is too 
complicated, we can approximate
 𝔼ℎ 𝑥 ≈ 𝑛−1 σ𝑖=1

𝑛 ℎ 𝑥𝑖

where 𝑥1, … , 𝑥𝑛 are sampled from 𝑋

❖ This approximation also tells us how to 
estimate probabilities, since 

ℙ 𝑋 ∈ 𝐴 = 𝔼1𝑋∈𝐴

❖ For computational Bayes, we need something 
a bit fancier: weighted samples



Θ

𝑋

probability of 
heads, unknown

number of heads 
from 4 coin tosses

∼ 𝑈[0,1]

∼ Bin(𝑛, Θ)

0. First write out our probability model 
for the data Pr𝑋(𝑥|Θ = 𝜃)

1. Write out PrΘ(𝜃)

2. Use the formula 
PrΘ 𝜃|𝑋 = 𝑥 = 𝜅PrΘ 𝜃 Pr𝑋 𝑥|Θ = 𝜃
then find 𝜅 to make this integrate to 1

This lets us calculate probabilities:

ℙ Θ ∈ range 𝑋 = 𝑥 = න
θ∈range

 

PrΘ 𝜃 𝑋 = 𝑥  𝑑𝜃

… but these are usually intractable
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0. First write out our probability model 
for the data Pr𝑋(𝑥|Θ = 𝜃)

1. Write out PrΘ(𝜃)

2. Use the formula 
PrΘ 𝜃|𝑋 = 𝑥 = 𝜅PrΘ 𝜃 Pr𝑋 𝑥|Θ = 𝜃
then find 𝜅 to make this integrate to 1

This lets us calculate probabilities:

ℙ Θ ∈ range 𝑋 = 𝑥 = න
θ∈range

 

PrΘ 𝜃 𝑋 = 𝑥  𝑑𝜃

1. Generate a sample 𝜃1, … , 𝜃𝑛  from Θ

2. Compute weights 
𝑤𝑖 = Pr𝑋(𝑥|Θ = 𝜃𝑖), 
then rescale weights to sum to one

ℙ Θ ∈ range 𝑋 = 𝑥 ≈ ෍
𝑖=1

𝑛

𝑤𝑖1𝜃𝑖∈range

𝔼 ℎ Θ |𝑋 = 𝑥 ≈ Σ𝑖𝑤𝑖ℎ 𝜃𝑖

One way to do

COMPUTATIONAL BAYES ALGEBRAIC BAYES

… but these are usually intractable
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It’s more elegant to use the generalized version



1. Generate a sample 𝜃1, … , 𝜃𝑛  from Θ

2. Compute weights 
𝑤𝑖 = Pr𝑋(𝑥|Θ = 𝜃𝑖), 
then rescale weights to sum to one

𝔼 ℎ Θ |𝑋 = 𝑥 ≈ Σ𝑖𝑤𝑖ℎ 𝜃𝑖

0. First write out our probability model 
for the data Pr𝑋(𝑥|Θ = 𝜃)

Reason about Θ 𝑋 = 𝑥  indirectly, using

One way to do

COMPUTATIONAL BAYES
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Example

I got 𝑥 = 1 head out of 𝑛 = 4 coin tosses. I 
propose the probability model 𝑋 ∼ Bin(𝑛, Θ). I 
don’t know Θ, so I’ll treat it as a random variable, 
Θ ∼ 𝑈[0,1].

Plot the distribution of (Θ|𝑋 = 𝑥).

θsamp = np.random.uniform(0,1, size=1000)

Likelihood of the data:

Generate a sample 𝜃1, … , 𝜃𝑛  from Θ:

Compute weights 𝑤𝑖 = Pr𝑋(𝑥|Θ = 𝜃𝑖), 
then rescale weights to sum to one:

Reason about (Θ|𝑋 = 𝑥) indirectly, using
𝔼 ℎ Θ |𝑋 = 𝑥 ≈ Σ𝑖𝑤𝑖ℎ 𝜃𝑖

w = 4 * θsamp**1 * (1-θsamp)**3
w = w / np.sum(w)
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Reason about (Θ|𝑋 = 𝑥) indirectly, using
𝔼 ℎ Θ |𝑋 = 𝑥 ≈ Σ𝑖𝑤𝑖ℎ 𝜃𝑖

plt.hist(θsamp, weights=w)
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𝜃

Example

I got 𝑥 = 1 head out of 𝑛 = 4 coin tosses. I 
propose the probability model 𝑋 ∼ Bin(𝑛, Θ). I 
don’t know Θ, so I’ll treat it as a random variable, 
Θ ∼ 𝑈[0,1].

Plot the distribution of (Θ|𝑋 = 𝑥).

For each 𝜃-bin, let’s 
show a bar of height
ℙ 𝜃 ∈ bin 𝑋 = 𝑥) 



plt.hist(θsamp, weights=w)plt.hist(θsamp, weights=w, density=True)

For samples of a continuous random variable, I prefer to plot 
density histograms, where the bar heights are rescaled 
so that the total area is 1.

This makes them directly comparable to a pdf.

pdf of Beta(2,4)
(which is the posterior distribution we derived mathematically)
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Exercise 6.2.1
Consider the probability model

def rxy():
    x = np.random.uniform(-1,1)
    y = np.random.normal(loc=x**2, scale=0.1)
    return (x,y)

Suppose we have observed 𝑌 = 0.2 and we want to know 
the likely range of 𝑋. Plot a histogram of X 𝑌 = 0.2).

Likelihood of the data:

Generate a sample 𝜃1, … , 𝜃𝑛  from Θ:

Compute weights 𝑤𝑖 = Pr𝑋(𝑥|Θ = 𝜃𝑖), 
then rescale weights to sum to one:



Exercise 8.3.2 (Multiple unknowns)
We have a dataset 𝑥1, … , 𝑥𝑛 . We propose to model it as 
independent samples from 𝑈[𝐴, 𝐴 + 𝐵], where 𝐴 and 𝐵 
are unknown parameters. 

Using 𝐴 ∼ Exp(0.5) and 𝐵 ∼ Exp(1.0) as prior 
distributions for the unknown parameters, find the 
distribution of (𝐵|data).

Likelihood of the data:

Generate a sample 𝜃1, … , 𝜃𝑛  from Θ:

Compute weights 𝑤𝑖 = Pr𝑋(𝑥|Θ = 𝜃𝑖), 
then rescale weights to sum to one:



Exercise 8.3.2 (Multiple unknowns)
We have a dataset 𝑥1, … , 𝑥𝑛 . We propose to model it as 
independent samples from 𝑈[𝐴, 𝐴 + 𝐵], where 𝐴 and 𝐵 
are unknown parameters. 

Using 𝐴 ∼ Exp(0.5) and 𝐵 ∼ Exp(1.0) as prior 
distributions for the unknown parameters, find the 
distribution of (𝐵|data).

TIP. First find the joint posterior distribution for all 
the unknown parameters. Then, pick out just the 
one you’re interested in.

TIP. If 𝑛 is large, you can run into underflow problems 
if you compute Pr(𝑥1, … , 𝑥𝑛|params) directly.

Be clever about rescaling the weights,
using the log-sum-exp trick (exercise 8.3.4).

We call this marginalization.



Why does computational Bayes work?

Θ 𝑋
non-uniform 
distribution

∼ 𝑁(Θ2, 0.12)

Joint pdf
PrΘ,𝑋 𝜃, 𝑥

 = PrΘ 𝜃  Pr𝑋(𝑥|Θ = 𝜃)

PrΘ 𝜃 𝑋 = 𝑥
 ∝ PrΘ,𝑋 𝜃, 𝑥
 ∝ PrΘ 𝜃  Pr𝑋(𝑥|Θ = 𝜃)

bin height at 𝜃
 ∝ num.samples × weights
 ∝ PrΘ 𝜃 × Pr𝑋(𝑥|Θ = 𝜃)

sum up the weights in each bin

num.samples near 𝜃 
∝ PrΘ(𝜃)

weight 𝑤𝑖 = Pr𝑋 𝑥 Θ = 𝜃𝑖
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Bayes’s rule for random variables

Pr𝑋 𝑥 𝑌 = 𝑦 = Pr𝑋 𝑥
Pr𝑌(𝑦|𝑋 = 𝑥)

Pr𝑌(𝑦)

Bayesianism
Whenever there’s an unknown parameter, you should 
express your uncertainty about it by treating it as a 
random variable.

Reverend Thomas 
Bayes, 1701–1761

ℙ 𝑋 ∈ A 𝑌 = 𝑦 ≈ ෍
𝑖=1

𝑛

𝑤𝑖1𝑥𝑖∈𝐴

𝑋

𝑌

unobserved 
(latent) variable

we have observed 
the value of 𝑌



Isn’t it crazy to take the unknown parameter to be a random 
variable? Would a physicist be prepared to say “Let the speed of 
light be a random variable?” No!

THOUGHT EXPERIMENT. If I draw a card, and ask you “What’s the 
probably of Hearts”, you’ll likely answer ¼. You’ll give this answer 
even if I can see the card. In other words, you’re treating it as 
random even though the value is known. You’re using 
randomness to express your uncertainty.

When we create a probability model, we’re not 
claiming that its randomness is a true reflection 
of the actual physical world. (The actual physical 
world does have randomness, via Schroedinger’s 
equation, but no sane data modeller would ever 
use that as their randomness.) When we model 
a coin as Bin(1, 𝜃) that’s not meant to express 
the underlying physical reality. It’s just a mental 
construct – it’s all in our heads.
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