COMPUTATIONAL METHODS

\& If we want $\mathbb{E} h(X)$ but the maths is too complicated, we can approximate

$$
\mathbb{E} h(x) \approx n^{-1} \sum_{i=1}^{n} h\left(x_{i}\right)
$$

where x_{1}, \ldots, x_{n} are sampled from X

This approximation also tells us how to estimate probabilities, since

$$
\mathbb{P}(X \in A)=\mathbb{E} 1_{X \in A}
$$

For computational Bayes, we need something a bit fancier: weighted samples
probability of
heads, unknown
$\Theta \sim U[0,1]$

$$
X \sim \operatorname{Bin}(n, \Theta)
$$

number of heads from 4 coin tosses
0. First write out our probability model for the data $\operatorname{Pr}_{X}(x \mid \Theta=\theta)$

1. Write out $\operatorname{Pr}_{\Theta}(\theta)$
2. Use the formula
$\operatorname{Pr}_{\Theta}(\theta \mid X=x)=\kappa \operatorname{Pr}_{\Theta}(\theta) \operatorname{Pr}_{X}(x \mid \Theta=\theta)$ then find κ to make this integrate to 1
but these are usually intractable
This lets us calculate probabilities:
$\mathbb{P}(\Theta \in$ range $\mid X=x)=\int_{\theta \in \text { range }} \operatorname{Pr}_{\Theta}(\theta \mid X=x) d \theta$

One way to do

COMPUTATIONAL BAYES

1. Generate a sample $\left(\theta_{1}, \ldots, \theta_{n}\right)$ from Θ
2. Compute weights

$$
w_{i}=\operatorname{Pr}_{X}\left(x \mid \Theta=\theta_{i}\right),
$$

then rescale weights to sum to one

It's more elegant to use the generalized version

$$
\mathbb{E}[h(\Theta) \mid X=x] \approx \Sigma_{i} w_{i} h\left(\theta_{i}\right)
$$

ALGEBRAIC BAYES

0. First write out our probability model for the data $\operatorname{Pr}_{X}(x \mid \Theta=\theta)$
1. Write out $\mathrm{Pr}_{\Theta}(\theta)$
2. Use the formula

but these are usually intractable
This lets us calculate probabilities:

One way to do

COMPUTATIONAL BAYES

0. First write out our probability model for the data $\operatorname{Pr}_{X}(x \mid \Theta=\theta)$
1. Generate a sample $\left(\theta_{1}, \ldots, \theta_{n}\right)$ from Θ
2. Compute weights
$w_{i}=\operatorname{Pr}_{X}\left(x \mid \Theta=\theta_{i}\right)$, then rescale weights to sum to one

Reason about ($\Theta \mid X=x$) indirectly, using

$$
\mathbb{E}[h(\Theta) \mid X=x] \approx \Sigma_{i} w_{i} h\left(\theta_{i}\right)
$$

I got $x=1$ head out of $n=4$ coin tosses. I propose the probability model $X \sim \operatorname{Bin}(n, \Theta)$. I don't know Θ, so Ill treat it as a random variable, $\Theta \sim U[0,1]$.

Plot the distribution of $(\Theta \mid X=x)$.

Likelihood of the data:

$$
\begin{aligned}
X \sim \operatorname{Bin}(n, \Theta) \quad \operatorname{Pr}_{x}(x \mid \Theta=0) & =\binom{n}{x} \theta^{x}(1-\theta)^{n-x} \\
& =4 \theta(1-\theta)^{3} \quad \text { for } n=4, x=1
\end{aligned}
$$

Generate a sample $\left(\theta_{1}, \ldots, \theta_{n}\right)$ from Θ :

$$
\text { Osamp }=\text { np.random.uniform(} 0,1, \text { size =1000) }
$$

Compute weights $w_{i}=\operatorname{Pr}_{X}\left(x \mid \Theta=\theta_{i}\right)$,
then rescale weights to sum to one:

$$
\begin{aligned}
& \mathrm{w}=4 * \theta \operatorname{samp}^{* * 1} *(1-\theta \operatorname{samp}) * * 3 \\
& \mathrm{w}=\mathrm{w} / \mathrm{np} \cdot \operatorname{sum}(\mathrm{w})
\end{aligned}
$$

Reason about $(\Theta \mid X=x)$ indirectly, using
$\mathbb{E}[h(\Theta) \mid X=x] \approx \Sigma_{i} w_{i} h\left(\theta_{i}\right)$

I got $x=1$ head out of $n=4$ coin tosses. \mid propose the probability model $X \sim \operatorname{Bin}(n, \Theta)$. I don't know Θ, so Ill treat it as a random variable, $\Theta \sim U[0,1]$.

Plot the distribution of $(\Theta \mid X=x)$.
Reason about $(\Theta \mid X=x)$ indirectly, using

$$
\begin{aligned}
\mathbb{E}[h(\Theta) \mid X=x] & \approx \Sigma_{i} w_{i} h\left(\theta_{i}\right) \\
\mathbb{P}(\Theta \in \operatorname{bin} \mid \text { data }) & =\mathbb{E}\left(1_{0} \in \operatorname{bin} \mid \text { data }\right) \\
& =\mathbb{E}\left(h(\Theta) \mid \text { data) where } h(0)=1_{0 \in \operatorname{bin}}\right.
\end{aligned}
$$

For each θ-bin, let's show a bar of height $\mathbb{P}(\theta \in \operatorname{bin} \mid X=x)$

$$
\approx \sum_{i} w_{i} h\left(\theta_{i}\right) \text { where } \theta_{i} \text { sampled from } \theta_{\sim} u[0,1]
$$

plt.hist(θ stamp, weights=w)

$$
\begin{aligned}
& =\sum_{i} w_{i} 1_{\theta_{i} \in \operatorname{bin}} \\
& =\sum_{i=0_{i} \in \operatorname{bin}} w_{i}
\end{aligned}
$$

For each bin. sum up the weighty of the 0 -samples rhatake in that \sin.

For samples of a continuous random variable, I prefer to plot density histograms, where the bar heights are rescaled so that the total area is 1 .

This makes them directly comparable to a pdf.
plt.hist(θ samp, weights=w) density=True)

Exercise 6.2.1

Consider the probability model

def $r x y()$:
$x=n p$. random. uniform $(-1,1)$
$y=n p . r a n d o m . n o r m a l(l o c=x * * 2$, scale =0.1)
return (x, y)
Suppose we have observed $Y=0.2$ and we want to know the likely range of X. Plot a histogram of $(\mathrm{X} \mid Y=0.2)$.

```
observed }y=0.
```

Likelihood of the data: $\quad \operatorname{Pr}_{y}(0.2 \mid x=x)=$ scipy.stats.noom.pdf $(0.2$, loci $=x \times * 2$, scale $=0.1)$

$x_{1} \cdots x_{n} \quad x$

Generate a sample (A stamp = np.random.uniform(-1, 1, size=10000)

$$
\operatorname{Pr}_{y}\left(0.2 \mid x=x_{i}^{-}\right)
$$

```
# weight[i] = Pr_Y(0.2 | x=xsamp[i])
w = scipy.stats.norm.pdf(.2, loc=xsamp**2, scale=0.1)
w = w / np.sum(w)
plt.hist(xsamp, weights=w, density=True, bins=np.linspace(-1,1,100))
plt.show()
```

Exercise 8.3.2 (Multiple unknowns)
We have a dataset $\left[x_{1}, \ldots, x_{n}\right]$. We propose to model it as independent samples from $U[A, A+B]$, where A and B are unknown parameters.
Using $A \sim \operatorname{Exp}(0.5)$ and $B \sim \operatorname{Exp}(1.0)$ as prior distributions for the unknown parameters, find the distribution of ($B \mid$ data).
A, B unobserved

Likelihood of the data:

$$
\begin{aligned}
& \text { hood of the data: } \\
& \begin{aligned}
& \operatorname{Pr}\left(x_{1}, \ldots, x_{n} \mid A=a, B=b\right)=\prod_{i=1}^{n} \operatorname{Pr}\left(x_{i} \mid A=a, B=b\right) \text { since our model says rhey're inclependent } \\
&=\prod_{i=1}^{n}\left\{\frac{1}{b} I_{a} \leq x_{i} \leq b\right\} \text { the } \operatorname{pdf} \text { of } U[a, a+b] \\
&=\frac{1}{b^{n}} 1 a \leq \min x_{i} 1_{\max } x_{i} \leq a+b \\
&\left(\left(a, b_{1}\right), \ldots,\left(a_{n}, b_{n}\right)\right) \quad(A, B) \quad x=[2,3,2.1,2.4,3.14,1.8]
\end{aligned}
\end{aligned}
$$

Generate a sample $\left(\theta_{1}, \ldots, \theta_{n}\right)$ from ©:

$$
\operatorname{Pr}(\operatorname{dota}((A, B)=(a, b))
$$

\# Assume that A and B are independent. To generate samples of $(A, B) \ldots$
asamp $=n p . r a n d o m . e x p o n e n t i a l(s c a l e=1 / 0.5$, size $=1000000)$
bsamp $=$ np.random.exponential(scale=1/1.0, size=1000000) \#absamp = zip(asamp, bsamp)
Compute weights $w_{i}=\operatorname{Pr}_{C}\left(x \mid \Theta-\theta_{i}\right)$, then rescale weights to sum to one:

```
w = 1/bsamp**len(x) * np.where((asamp <= min(x)) & (max(x) <= asamp+bsamp), 1, 0)
w = w/np.sum(w)
plt.hist(bsamp, weights=w, density=True, bins=np.linspace(0,5,100))
plt.show()
```

Exercise 8.3.2 (Multiple unt owns) We have a dataset $\left[x_{1}, \ldots, x_{n}\right]$. Ve propose to model it as independent samples from $I L A, A+B]$, where A and B are unknown parameters.
Using $A \sim \operatorname{Exp}(0.5)$ and $B \sim \operatorname{Exp}(1.0)$ as prior distributions fotheunknown parameters, find the distribution of $(B \mid$ data $)$.

TIP. First find the joint posterior distribution for all
the unknown parameters. Then, pick out just the one you're interested in.
We call this marginalization.

TIP. If n is large, you can run into underflow problems if you compute $\operatorname{Pr}\left(x_{1}, \ldots, x_{n} \mid\right.$ params $)$ directly.
Be clever about rescaling the weights,
using the log-sum-exp trick (exercise 8.3.4).

Why does computational Bayes work?

```
\Theta \longrightarrow X
    non-uniform ~N( }\mp@subsup{\Theta}{}{2},0.\mp@subsup{1}{}{2}
    distribution
```


$$
\begin{aligned}
& \text { Bayes's rule for random variables } \\
& \operatorname{Pr}_{X}(x \mid Y=y)=\operatorname{Pr}_{X}(x) \frac{\operatorname{Pr}_{Y}(y \mid X=x)}{\operatorname{Pr}_{Y}(y)} \\
& \mathbb{P}(X \in \mathrm{~A} \mid Y=y) \approx \sum_{i=1}^{n} w_{i} 1_{x_{i} \in A}
\end{aligned}
$$

we have observed the value of Y

Bayesianism

Whenever there's an unknown parameter, you should express your uncertainty about it by treating it as a random variable.

Isn't it crazy to take the unknown parameter to be a random variable? Would a physicist be prepared to say "Let the speed of light be a random variable?" No!

THOUGHT EXPERIMENT. If I draw a card, and ask you "What's the probably of Hearts", you'll likely answer $1 / 4$. You'll give this answer even if I can see the card. In other words, you're treating it as random even though the value is known. You're using randomness to express your uncertainty.

When we create a probability model, we're not claiming that its randomness is a true reflection of the actual physical world. (The actual physical world does have randomness, via Schroedinger's equation, but no sane data modeller would ever use that as their randomness.) When we model a coin as $\operatorname{Bin}(1, \theta)$ that's not meant to express the underlying physical reality. It's just a mental construct - it's all in our heads.

