
Climate challenge

❖ What is the rate of temperature increase at Cambridge?

❖ Are temperatures increasing at a constant rate, or has the increase accelerated?

❖ How do the results compare across the whole of the UK?

Your task is to answer these questions using appropriate linear models, and to produce elegant 
plots to communicate your findings.



Anant Gupta (Fitzwilliam)

Jing Xuan Tan (Hughes Hall)

Joel Robinson (Emmanuel)

Paul D’Souza (Robinson)

Wei Chuen Sin (Hughes Hall)



Q1. What is the rate of temperature increase in Cambridge?

X = np.column_stack([np.sin(2*π*df.t), np.cos(2*π*df.t), df.t])
model = sklearn.linear_model.LinearRegression()
model.fit(X, df.temp)
α,(β1,β2,γ) = (model.intercept_, model.coef_)
γ

Always start by saying 
exactly what data you’re 
working with.

▪ 0.028°C per year [1959 to present]
▪ 0.025°C per year [???]

Fit the model:
Temp ≈ 𝛼 + 𝛽1 sin 2𝜋𝑡 + 𝛽2 cos 2𝜋𝑡 + 𝛾𝑡

It’s a great idea to run 
sensitivity analyses. Is my 
answer robust, if I look at 
a different subset of the 
data?



Q2. Are temperatures increasing at a constant rate?

To see if there’s a sign of nonlinearity, fit the model:
Temp ≈ 𝛼 + 𝛽1 sin 2𝜋𝑡 + 𝛽2 cos 2𝜋𝑡 + 𝛾𝑡 + 𝛿𝑡2

Conclusion: 𝛿 = 0.00032

Anant Gupta
Report your fitted 
model in meaningful 
units (e.g. impact on 

predicted response, not just 
raw coefficients)

Joel Robinson. This change is very small so may be insignificant. Assuming that the change is significant, we can 
conclude that the temperature change is increasing and accelerating. However since we have no data for values past 2024 
it would be unwise to try to extrapolate what future temperature values may be from this model.

Report a few significant figures, 
rather than “𝛿 = 0.000”

Show the context



Q2. Are temperatures increasing at a constant rate?

To see if there’s a sign of nonlinearity, fit the model:
Temp ≈ 𝛼 + 𝛽1 sin 2𝜋𝑡 + 𝛽2 cos 2𝜋𝑡 + 𝛾𝑡 + 𝛿𝑡2

Paul D’Souza

Make it easy to 
compare models

Make it easy to compare models 
to the data.

quadratic
linear

yearly average

… but it’s a sin to waste 
data! Use all the data to fit 
your model (if your model is 
expressive enough to use it)



temp ≈ 𝛽1 sin 2𝜋𝑡 + 𝛽2 cos 2𝜋𝑡 + 𝛾decade

𝛾decade

Oxford data

temp ≈ 𝛼 + 𝛽1 sin 2𝜋𝑡 + 𝛽2 cos 2𝜋𝑡 + 𝛾𝑡 + 𝛿𝑡2

PRECONCEIVED 
BELIEFS

OPEN TO ANY 
EXPLANATION



Q2. Are temperatures increasing at a constant rate?

What about other models for non-linearity?

Anant Gupta

Temp ≈ 𝛼 + 𝛽1 sin 2𝜋𝑡 + 𝛽2 cos 2𝜋𝑡 + 𝛾𝑒𝛿 𝑡−𝜀   (needs scipy.optimize.fmin)

Paul D’Souza

“What if the periodic part isn’t a pure sinusoid?” 
→ let’s look at yearly averages instead of the full data

Anant Gupta

Temp ≈ 𝛼 + 𝛽1 + 𝛾1𝑡 sin 2𝜋𝑡 + (𝛽2 + 𝛾2𝑡) cos 2𝜋𝑡

Anant Gupta

“The residuals are too low in Jan/Feb/Mar, too high for 
the rest of the year, so the sinusoid isn’t a great fit.”

Wei Chuen Sin

“from climate science, we know that temperature is rising at an exponential rate”



How should we compare models?

Joel Robinson

The mean square error, 𝑛−1 σ𝑖=1
𝑛 𝑦𝑖 − pred𝑖

2, measures how well a model fits.

“It seemed that our model better fitted weather station readings from the North of the UK; the mean residuals squared value was smaller for 
Bradford, Tiree and Armagh than for Oxford, Cambridge and Heathrow. This may suggest that the north is experiencing climate change at a faster 
rate than the south and is therefore more suited to a quadratic model.”

MSE = 2.10 for the linear-increase model

MSE = 2.40 for the no-change model

Paul D’Souza

sklearn.linear_model.LinearRegression.score

This measures 𝑅2, which is a 
transformed version of MSE.



Model A:

𝑌𝑖 ∼ 1.62 + 0.49 𝑥𝑖

+ Normal(0, 2.392)

Model B:

𝑌𝑖 ∼ −38.5 + 95.7 𝑥𝑖 − 84.8 𝑥𝑖
2 + 38.3 𝑥𝑖

3

−9.5 𝑥𝑖
4 + 1.3 𝑥𝑖

5 − 0.09 𝑥𝑖
6 + 0.003 𝑥𝑖

7

+ Normal(0, 0.312)

dataset of (𝑥𝑖 , 𝑦𝑖) pairs

§4.1*

MSE large

MSE small



Model A:

𝑌𝑖 ∼ 1.62 + 0.49 𝑥𝑖

+ Normal(0, 2.392)

This model doesn’t just predict a value for 𝑦.

It predicts a distribution 𝑌, at every 𝑥.

§4.1*



Model A:

𝑌𝑖 ∼ 1.62 + 0.49 𝑥𝑖

+ Normal(0, 2.392)

Model B:

𝑌𝑖 ∼ −38.5 + 95.7 𝑥𝑖 − 84.8 𝑥𝑖
2 + 38.3 𝑥𝑖

3

−9.5 𝑥𝑖
4 + 1.3 𝑥𝑖

5 − 0.09 𝑥𝑖
6 + 0.003 𝑥𝑖

7

+ Normal(0, 0.312)

Area of 
high likelihood

Area of 
low likelihood

These points are very unlikely to 
have been generated by this model

There are several datapoints 𝑦𝑖 
where model B says “The likelihood 
of this 𝑦𝑖 is vanishingly small.” But 
these 𝑦𝑖 did appear in the dataset. 
So model B is a bad explanation.

§4.1*



MODEL EVALUATION AND COMPARISON

After we fit a model, how do we decide if it’s a good fit?

1. Evaluate the mean square error log likelihood of the dataset

2. Plot the residuals log likelihood of each datapoint,
and look for systematic patterns.



Q3. How do the results compare across the UK?

We could model the entire dataset as
Temp ≈ 𝛼 + 𝛽1 sin 2𝜋𝑡 + 𝛽2 cos 2𝜋𝑡 + 𝛾𝑡

Wei Chuen Sin

Paul D’Souza

(not the entire dataset, but only the subset for 
which all stations are present!)

It’s a really useful sanity 
check to show the 
“disposition” of the entire 
dataset.



Q3. How do the results compare across the UK?

We could model each station individually:

for 𝑠 in stations:

 model data from station 𝑠 as Temp ∼ 𝛼 + 𝛽1 sin 2𝜋𝑡 + 𝛽2 cos 2𝜋𝑡 + 𝛾𝑡 + 𝑁(0, 𝜎2)

Jing Xuan Tan

It’s very powerful to be able 
to extract coefficients and 
plot them all together.

Or, use one-hot coding to extract per-station coefficients:

Temp ≈ 𝛼station + 𝛽1 sin 2𝜋𝑡 + 𝛽2 cos 2𝜋𝑡 + 𝛾station𝑡

IMHO it’s always cleaner to 
build a single model for 
your entire dataset.



By using random variables for unknown quantities, 
we can reason about confidence.

Θ

𝑋

probability of 
heads, unknown

number of heads 
from 4 coin tosses

prior belief
PrΘ 𝜃

𝜃 𝜃

+ 
data

𝑥
 →  

posterior belief
PrΘ 𝜃 𝑋 = 𝑥

∼ 𝑈[0,1]

∼ Bin(𝑛, Θ)



By using random variables for unknown quantities, 
we can reason about confidence.

Θ

𝑋

probability of 
heads, unknown

number of heads 
from 4 coin tosses

prior belief
PrΘ 𝜃

𝜃 𝜃

+ 
data

𝑥
 →  

posterior belief
PrΘ 𝜃 𝑋 = 𝑥

∼ 𝑈[0,1]

∼ Bin(𝑛, Θ)

0. First write out our probability model 
for the data Pr𝑋(𝑥|Θ = 𝜃)

1. Write out PrΘ(𝜃)

2. Use the formula 
PrΘ 𝜃|𝑋 = 𝑥 = 𝜅PrΘ 𝜃 Pr𝑋 𝑥|Θ = 𝜃
then find 𝜅 to make this integrate to 1

This lets us calculate probabilities:

ℙ Θ ∈ range 𝑋 = 𝑥 = න
θ∈range

 

PrΘ 𝜃 𝑋 = 𝑥  𝑑𝜃



Exercise.
Consider the pair of random variables (Θ, 𝑋) where

Θ ∼ 𝑈 0,1 , 𝑋 ∼ Bin(4, Θ)

Find the distribution of (Θ|𝑋 = 1).

PrΘ 𝜃 =

Pr𝑋 𝑥 Θ = 𝜃 =

PrΘ 𝜃 𝑋 = 1 = 𝜅 PrΘ 𝜃  Pr𝑋(1|Θ = 𝜃)



Exercise.
Consider the pair of random variables (Θ, 𝑋) where

Θ ∼ 𝑈 0,1 , 𝑋 ∼ Bin(4, Θ)

Find the distribution of (Θ|𝑋 = 1).

PrΘ 𝜃 𝑋 = 1 = 𝜅 PrΘ 𝜃  Pr𝑋(1|Θ = 𝜃)

Beta

Probability density function

Notation Beta(𝛼, 𝛽)

PDF 𝑥𝛼−1 1 − 𝑥 𝛽−1

𝐵(𝛼, 𝛽)

where 𝐵 𝛼, 𝛽 =
Γ 𝛼 Γ(𝛽)

Γ(𝛼+𝛽)
 and Γ 

is the Gamma function.this is a standard pdf

What is ℙ Θ ∈ .2,3  𝑋 = 1)?

D = scipy.stats.beta(a=2,b=4)
D.cdf(.3) – D.cdf(.2) 

so this constant
must be 1 (otherwise this pdf wouldn’t integrate to 1 wr.t. θ)



Exercise 5.2.3 (classification)
In a dataset of MP expense claims, let 𝑦𝑖  be log10 of the claim amount in record 𝑖. 
A histogram of the 𝑦𝑖  suggests we use a Gaussian mixture model with two 
components,

𝐶 = ቊ
1 with prob 𝑝 − 1
2 with prob 1 − 𝑝

𝑌 ∼ Normal 𝜇𝐶 , 𝜎𝐶
2

Find the probability that a claim amount £5000 belongs to the component 𝑐 = 2.

PrC 𝑐 =

Pr𝑌 𝑦 C = 𝑐 =

PrC 𝑐 𝑌 = 𝑦 = 𝜅 PrC 𝑐  Pr𝑌(𝑦|C = 𝑐)



By using random variables for unknown quantities, 
we can reason about confidence.

Θ

𝑋

probability of 
heads, unknown

number of heads 
from 4 coin tosses

prior belief
PrΘ 𝜃

𝜃 𝜃

+ 
data

𝑥
 →  

posterior belief
PrΘ 𝜃 𝑋 = 𝑥

∼ 𝑈[0,1]

∼ Bin(𝑛, Θ)

0. First write out our probability model 
for the data Pr𝑋(𝑥|Θ = 𝜃)

1. Write out PrΘ(𝜃)

2. Use the formula 
PrΘ 𝜃|𝑋 = 𝑥 = 𝜅PrΘ 𝜃 Pr𝑋 𝑥|Θ = 𝜃
then find 𝜅 to make this integrate to 1

This lets us calculate probabilities:

ℙ Θ ∈ range 𝑋 = 𝑥 = න
θ∈range

 

PrΘ 𝜃 𝑋 = 𝑥  𝑑𝜃

… but these are usually intractable



Let 𝑋 be the location of a 
randomly thrown dart, and let 
𝑥1, … , 𝑥𝑛 be some throws.

The probability of hitting 𝐴 is

ℙ 𝑋 ∈ 𝐴 ≈
1

𝑛
෍

𝑖=1

𝑛

1𝑥𝑖∈𝐴

What’s the chance that a randomly thrown 
dart will hit the mystery object 𝐴?

1
2
3
4

# Let 𝑋 ∼ 𝑁(𝜇 = 1, 𝜎 = 3). What is ℙ 𝑋 > 5 ?
x = np.random.normal(loc=1, scale=3, size=10000)
i = (x > 5)
np.mean(i)

§6. Computational methods



Expectation
For a real-valued random variable 𝑋

𝔼𝑋 = ൝
σ𝑥 𝑥 Pr𝑋 𝑥 , 𝑑𝑥if 𝑋 is discrete 

𝑥׬
𝑥 Pr𝑋 𝑥 𝑑𝑥 , if 𝑋 is continuous

 

§6.1



Law of the Unconscious Statistician
For a random variable 𝑋 and a real-valued function ℎ 

§6.1

If we want to know the average properties of a rich random variable 
(random images, random texts), we have to use real-valued 
property readout functions h(X) so that we can take averages.

≈
1

𝑛
෍

𝑖=1

𝑛

ℎ 𝑥𝑖

where 𝑥1, … , 𝑥𝑛 is a sample drawn from 𝑋

Monte Carlo integration

𝔼ℎ 𝑋

𝔼ℎ 𝑋 = ൝
σ𝑥 ℎ 𝑥  Pr𝑋 𝑥 , 𝑑𝑥if 𝑋 is discrete 

𝑥׬
ℎ 𝑥  Pr𝑋 𝑥 𝑑𝑥 , if 𝑋 is continuous

 𝔼ℎ 𝑋 = ൝
σ𝑥 ℎ 𝑥  Pr𝑋 𝑥 , 𝑑𝑥if 𝑋 is discrete 

𝑥׬
ℎ 𝑥  Pr𝑋 𝑥 𝑑𝑥 , if 𝑋 is continuous

 



Let 𝑋 be the location of a 
randomly thrown dart, and let 
𝑥1, … , 𝑥𝑛 be some throws.

The probability of hitting 𝐴 is

ℙ 𝑋 ∈ 𝐴 ≈
1

𝑛
෍

𝑖=1

𝑛

1𝑥𝑖∈𝐴

§6.1



Monte Carlo integration

𝑎 𝑏

ℎ(𝑥) 

න
𝑥=𝑎

𝑏

ℎ 𝑥  𝑑𝑥 ≈ ෍

𝑖=1

𝑛

ℎ 𝑥𝑖

𝑏 − 𝑎

𝑛

where 𝑥𝑖 is the midpoint of interval 𝑖

Trinity College integration

Let’s instead approximate this integral using Monte Carlo. Let 𝑋 ∼ 𝑈[𝑎, 𝑏].

By Monte Carlo,

𝔼ℎ 𝑋 ≈
1

𝑛
෍

𝑖=1

𝑛

ℎ 𝑥𝑖  where 𝑥1, … , 𝑥𝑛 sampled from 𝑋

න
𝑥=𝑎

𝑏

ℎ 𝑥  Pr𝑋 𝑥  𝑑𝑥 = න
𝑥=𝑎

𝑏

ℎ 𝑥  
1

𝑏 − 𝑎
 𝑑𝑥

Thus,

න
𝑥=𝑎

𝑏

ℎ 𝑥  𝑑𝑥 ≈
𝑏 − 𝑎

𝑛
෍

𝑖=1

𝑛

ℎ(𝑥𝑖)

§6.1



COMPUTATIONAL METHODS

❖ If we want 𝔼ℎ(𝑋) but the maths is too 
complicated, we can approximate it using 
𝑥1, … , 𝑥𝑛 sampled from 𝑋

❖ The approximation for 𝔼ℎ(𝑋) also tells us 
how to estimate probabilities, since 
ℙ 𝑋 ∈ 𝐴 = 𝔼1𝑋∈𝐴

❖ For computational Bayes, we need 
something a bit fancier: weighted samples
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