
I tossed four coins 
and got one head.

Using a Bin(𝑛, 𝑝) model, I estimate 
the probability of heads is Ƹ𝑝 = 25%

But surely, the more data we 
have, the more confident we 
should be!

25%

I tossed twelve coins 
and got three heads.

Using a Bin(𝑛, 𝑝) model, I estimate 
the probability of heads is Ƹ𝑝 =



“This is a 40mph speed 
limit, with probability 98%.”

Neural networks tell us 
probabilities, but they don’t 
tell us their confidence.

No one has worked out how 
to extract confidences from 
neural networks. But, in 
Bayesian statistics, we do 
know how to …



What are these probabilities?
▪ ℙ have COVID test +ve)
▪ ℙ have COVID test −ve)

Let’s rewrite this data as a probability model:

Let 𝑋 = 1have COVID and let 𝑌 = 1test+ve

1 𝑋 ~ Bin(1, 0.004)

test +ve test -ve

got COVID 376 24

not got COVID 996 98,604

Data from a population sample of 100,000 people:

Baye’s rule

99,400

99,600

total

2

3

4

5

if 𝑋 == 1:
    𝑌~ Bin(1, 0.94)
else:
    𝑌~ Bin(1, 0.01)

ℙ 𝑋 = 1 𝑌 = 1

=
ℙ 𝑋 = 1  ℙ(𝑌 = 1|𝑋 = 1)

ℙ(𝑌 = 1)

=
0.004 × 0.94

0.004 × 0.94 + 0.996 × 0.01

376 / 400 = 0.94

996 / 99 600 = 0.01

400 / 100 000 = 0.004



Bayes’s rule for random variables

ℙ 𝑋 = 𝑥 𝑌 = 𝑦 =
ℙ 𝑋 = 𝑥  ℙ 𝑌 = 𝑦 𝑋 = 𝑥)

ℙ(𝑌 = 𝑦)

Bayesianism
Whenever there’s an unknown parameter, 
you should express your uncertainty about it 
by treating it as a random variable.

Reverend Thomas 
Bayes, 1701–1761



By using random variables for unknown quantities, 
we can reason about confidence.

Θ

𝑋

probability of 
heads, unknown

number of heads 
from 4 coin tosses

We don’t know the value of Θ, but 
we’ll assume we know its distribution.

We observed 𝑋 = 1

We can use Bayes’s rule to work out 
how confident we are about the 
unknown parameter’s value …

e.g. to express complete ignorance,
Θ ~ Uniform[0,1]

ℙ Θ ∈ 20%, 30%  𝑋 = 1) = 21%



prior belief
PrΘ 𝜃

𝜃 𝜃

Θ

𝑋

∼ 𝑈[0,1]

∼ Bin(𝑛, Θ)

A more sophisticated way to reason about confidence 
is by using likelihood functions.

+ 
data

𝑥
 →  

posterior belief
PrΘ 𝜃 𝑋 = 𝑥



The data you see will affect your 
posterior belief about the parameter.

prior belief
PrΘ 𝜃

 + 
data

𝑥
 →  

posterior belief
PrΘ 𝜃 𝑋 = 𝑥

A tighter 
posterior 
distribution for Θ 
means we are 
more confident 
about its value.

ℙ Θ ∈ .2, . 3  data) = 21%

ℙ Θ ∈ .2, . 3  data) = 33%

𝜃 𝜃

𝜃 𝜃



Let 𝑋 = 1have COVID

Let 𝑌 = amount of viral RNA in a PCR test (CONTINUOUS)

What is the probability I have COVID, for an amount 𝑌 = 𝑦?

How does Bayes’s rule apply to continuous random variables?

ℙ 𝑋 = 1 𝑌 = 2.1 =
ℙ 𝑋 = 1  ℙ(𝑌 = 2.1|𝑋 = 1)

ℙ(𝑌 = 2.1)

By Bayes's rule,

ℙ 𝑋 = 1 𝑌 = 1 =
ℙ 𝑋 = 1  ℙ 𝑌 = 1 𝑋 = 1)

ℙ(𝑌 = 1)

Let 𝑋 = 1have COVID

Let 𝑌 = 1test+ve

What is the probability I have COVID, i.e. 𝑋 = 1, if 𝑌 = 1?

This version of Bayes’s rule doesn’t make 
sense for continuous random variables!



TODAY

§5.1, 5.2. Bayes’s rule done right

WEDNESDAY

§6. Applying Bayes’s rule computationally

FRIDAY

§8. Bayesianism

§4. Measuring how well a model fits the data (* non-examinable)

Climate challenge

For questions or feedback, I’ll be in the café after the lecture.



Bayes’s rule

ℙ 𝑋 = 𝑥 𝑌 = 𝑦 =
ℙ 𝑋 = 𝑥 ℙ 𝑌 = 𝑦 𝑋 = 𝑥

ℙ 𝑌 = 𝑦
 when ℙ 𝑌 = 𝑦 > 0

Pr𝑋 𝑥 𝑌 = 𝑦 =
Pr𝑋 𝑥  Pr𝑌 𝑦 𝑋 = 𝑥

Pr𝑌 𝑦
 when Pr𝑌(𝑌) > 0

For two discrete random variables 𝑋 and 𝑌,

For two discrete or continuous random variables 𝑋 and 𝑌,

§5



Joint distribution

The joint pmf of (𝑿, 𝒀)
Pr𝑋,𝑌 𝑥, 𝑦 = ℙ 𝑋 = 𝑥, 𝑌 = 𝑦

def rxy():
    x = np.random.randint(low=-5, high=6)  # from -5 to +5 inclusive
    y = np.random.binomial(n=6, p=(x/6)**2)
    return (x,y)

§5.1

Code to plot the joint pmf
xy_samp = [rxy() for _ in range(1000)]
plt.hist2d(xy_samp)



Marginal random variables

The marginal of 𝒀
Pr𝑌 𝑦 = ℙ 𝑌 = 𝑦

= 
𝑥

ℙ(𝑋 = 𝑥, 𝑌 = 𝑦)

= 
𝑥

Pr𝑋,𝑌(𝑥, 𝑦)

def rxy():
    x = np.random.randint(low=-5, high=6)  # from -5 to +5 inclusive
    y = np.random.binomial(n=6, p=(x/6)**2)
    return (x,y)

Code to plot the marginal pmf
y_samp = [y for (x,y) in xy_samp]
plt.hist(y_samp)

The joint pmf of (𝑿, 𝒀)
Pr𝑋,𝑌 𝑥, 𝑦 = ℙ 𝑋 = 𝑥, 𝑌 = 𝑦

§5.1

Code to plot the joint pmf
xy_samp = [rxy() for _ in range(1000)]
plt.hist2d(xy_samp)

by the Sum Rule

← i.e. just throw away the x values



Conditional random variables

𝑿 conditional on 𝒀 = 3

ℙ 𝑋 = 𝑥|𝑌 = 3 =
ℙ(𝑋 = 𝑥, 𝑌 = 3)

ℙ(𝑌 = 3)
=

Pr𝑋,𝑌(𝑥, 3)

Pr𝑌(3)

def rxy():
    x = np.random.randint(low=-5, high=6)  # from -5 to +5 inclusive
    y = np.random.binomial(n=6, p=(x/6)**2)
    return (x,y)

def rx_given_y():
    while True:
        x,y = rxy()
        if y == 3: break
    return x

Sample space:

Code to generate values from it:

We can think of “𝑿 conditional on 𝒀 = 3” 
as a random variable …

We’ve provided a valid probability mass function:

§5.1

def rx_given_y():
    Ω = {-5,...,5}
    p = [pmf(x) for x in Ω]
    return np.random.choice(Ω, p=p)

i.e. take the Y=3 row,
then rescale it to sum to 1



Conditional random variables

def rxy():
    x = np.random.randint(low=-5, high=6)  # from -5 to +5 inclusive
    y = np.random.binomial(n=6, p=(x/6)**2)
    return (x,y)

§5.1

We define the conditional random 
variable, written 𝑋 𝑌 = 𝑦 , by 
specifying its likelihood:

Pr 𝑋|𝑌=𝑦 𝑥 =
Pr𝑋,𝑌(𝑥, 𝑦)

Pr𝑌(𝑦)

def rx_given_y():
    Ω = {-5,...,5}
    p = [pmf(x) for x in Ω]
    return np.random.choice(Ω, p=p)



Recall: pdf and cdf for continuous random variables

For a continuous random variable 𝑋

ℙ 𝑥1 ≤ 𝑋 ≤ 𝑥2 = න
𝑥=𝑥1

𝑥2

Pr𝑋(𝑥) 𝑑𝑥

Pr𝑋 𝑥 =
𝑑

𝑑𝑥
ℙ(𝑋 ≤ 𝑥)

For a pair of continuous random variable 𝑋 and 𝑌

ℙ 𝑥1 ≤ 𝑋 ≤ 𝑥2 and 𝑦1 ≤ 𝑌 ≤ 𝑦2 = න
𝑥=𝑥1

𝑥2

න
𝑦=𝑦1

𝑦2

Pr𝑋,𝑌 𝑥, 𝑦  𝑑𝑥 𝑑𝑦

Pr𝑋,𝑌 𝑥, 𝑦 =
𝜕2

𝜕𝑥 𝜕𝑦
 ℙ(𝑋 ≤ 𝑥 and 𝑌 ≤ 𝑦)



Joint distribution and marginals (continuous case)

The joint pdf of (𝑿, 𝒀)
Pr𝑋,𝑌 𝑥, 𝑦

def rxy():
    x = np.random.uniform(-1,1)
    y = np.random.normal(loc=x**2, scale=0.1)
    return (x,y)

The marginal of 𝒀

Pr𝑌 𝑦 = න
𝑥

Pr𝑋,𝑌(𝑥, 𝑦)  𝑑𝑥

§5.1



Conditional random variables (continuous case)

def rxy():
    x = np.random.uniform(-1,1)
    y = np.random.normal(loc=x**2, scale=0.1)
    return (x,y)

We define the conditional random variable 
(𝑿|𝒀 = 𝒚) by specifying its likelihood:

Pr𝑋 𝑥 𝑌 = 𝑦 =
Pr𝑋,𝑌(𝑥, 𝑦)

Pr𝑌(𝑦)

§5.1

Take the 𝑌 = 0.6 slice of the joint pdf,
then rescale it so it integrates to 1
i.e. so we get a legitimate pdf.



Bayes’s rule

Bayes’s rule is true for any pair of random variables 𝑋, 𝑌.
It’s only useful in “sequential models” i.e. when the question tells us Pr𝑋(𝑥) and Pr𝑌(𝑦|𝑋 = 𝑥).

§5.1



Bayes’s rule for discrete or continuous random variables

For two random variables 𝑋 and 𝑌,

Pr𝑋 𝑥 𝑌 = 𝑦 =
Pr𝑋 𝑥  Pr𝑌(𝑦|𝑋 = 𝑥)

Pr𝑌(𝑦)
 when Pr𝑌 𝑦 > 0

In practice, we use it as

Pr𝑋 𝑥|𝑌 = 𝑦 = 𝜅 Pr𝑋 𝑥  Pr𝑌(𝑦|𝑋 = 𝑥)

constant that 
doesn’t involve 𝑥

then figure out 𝜅 so that Pr𝑋(⋅ |𝑌 = 𝑦) 
is a legitimate likelihood function

𝑥
Pr𝑋 𝑥|𝑌 = 𝑦  𝑑𝑥 = 1 

or σ𝑥 Pr𝑋 𝑥|𝑌 = 𝑦 = 1

§5.2



Exercise 5.2.1
Consider the pair of random variables (𝑋, 𝑌) generated by

    def rxy(σ):
        x = np.random.uniform(-1,1)
        y = np.random.normal(loc=x**2, scale=σ) 
        return (x,y)

Or, in maths notation,

𝑋 ∼ 𝑈 −1,1 ,  𝑌 ∼ 𝑁(𝑋2, 𝜎2)

Calculate Pr𝑋 𝑥 𝑌 = 𝑦).

Pr𝑋 𝑥 =

Pr𝑌 𝑦 𝑋 = 𝑥 =

Pr𝑋 𝑥 𝑌 = 𝑦 = 𝜅 Pr𝑋 𝑥  Pr𝑌(𝑦|𝑋 = 𝑥)
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