

I tossed four coins and got one head.

Using a $\operatorname{Bin}(n, p)$ model, I estimate the probability of heads is $\hat{p}=25 \%$

I tossed twelve coins and got three heads.

Using a $\operatorname{Bin}(n, p)$ model, I estimate the probability of heads is $\hat{p}=25 \%$

But surely, the more data we have, the more confident we should be!

"This is a 40 mph speed limit, with probability 98\%."

Neural networks tell us probabilities, but they don't tell us their confidence.

No one has worked out how to extract confidences from neural networks. But, in Bayesian statistics, we do know how to ...

Baye's rule

Data from a population sample of 100,000 people:

	test +ve	test -ve	total
got COVID	376	24	400
not got COVID	996	98,604	99,600

Let's rewrite this data as a probability model:

```
```

Let }X=\mp@subsup{1}{\mathrm{ have CoviD }}{}\mathrm{ and let }Y=\mp@subsup{1}{\mathrm{ test+ve}}{

```
```

Let }X=\mp@subsup{1}{\mathrm{ have CoviD }}{}\mathrm{ and let }Y=\mp@subsup{1}{\mathrm{ test+ve}}{
1 X~\operatorname{Bin}(1,0.004) 400/100000 = 0.004
1 X~\operatorname{Bin}(1,0.004) 400/100000 = 0.004
2 if }X==1\mathrm{ :
2 if }X==1\mathrm{ :
3 Y~\operatorname{Bin}(1,0.94) 376/400=0.94
3 Y~\operatorname{Bin}(1,0.94) 376/400=0.94
4 else:
4 else:
5 Y~\operatorname{Bin}(1,0.01) 996/99600=0.01

```
```

5 Y~\operatorname{Bin}(1,0.01) 996/99600=0.01

```
```

$$
\begin{aligned}
\mathbb{P}(X= & 1 \mid Y=1) \\
& =\frac{\mathbb{P}(X=1) \mathbb{P}(Y=1 \mid X=1)}{\mathbb{P}(Y=1)} \\
& =\frac{0.004 \times 0.94}{0.004 \times 0.94+0.996 \times 0.01}
\end{aligned}
$$

What are these probabilities?

- \mathbb{P} (have COVID | test + ve)
- \mathbb{P} (have COVID | test - ve)

Bayes's rule for random variables

$$
\begin{aligned}
\mathbb{P}(X=x \mid Y=y) & =\frac{\mathbb{P}(X=x) \mathbb{P}(Y=y \mid X=x)}{\mathbb{P}(Y=y)} \\
\operatorname{Pr}_{x}(x \mid Y=y) & =\frac{\operatorname{Pr}_{x}(x) \operatorname{Pr}_{y}(y \mid X=x)}{\operatorname{Pr}_{y}(y)}
\end{aligned}
$$

Bayesianism

Whenever there's an unknown parameter, you should express your uncertainty about it by treating it as a random variable.

By using random variables for unknown quantities, we can reason about confidence.

probability of
heads, unknown

(ㄷ) (ㄹ) () (B)

number of heads from 4 coin tosses

```
We don't know the value of \Theta, but
we'll assume we know its distribution.
e.g. to express complete ignorance,
O ~ Uniform[0,I]
We observed X = 1
```

```
We can use Bayes's rule to work out
how confident we are about the
unknown parameter's value
```

$\mathbb{P}(\Theta \in[20 \%, 30 \%] \mid X=1)=21 \%$

A more sophisticated way to reason about confidence is by using likelihood functions.

$$
\begin{aligned}
& \Theta \sim U[0,1] \\
& \downarrow \\
& X \sim \operatorname{Bin}(n, \Theta)
\end{aligned}
$$

$$
\begin{gathered}
\text { prior belief } \\
\operatorname{Pr}_{\Theta}(\theta)
\end{gathered}+\begin{gathered}
\text { data } \\
x
\end{gathered} \rightarrow \begin{gathered}
\text { posterior belief } \\
\operatorname{Pr}_{\Theta}(\theta \mid X=x)
\end{gathered}
$$

©
©
©
©
(1)

The data you see will affect your
posterior belief about the parameter.

How does Bayes's rule apply to continuous random variables?

```
Let }X=\mp@subsup{1}{\mathrm{ have Covid}}{
Let }Y=\mp@subsup{1}{\mathrm{ test+ve}}{
```

What is the probability I have COVID, i.e. $X=1$, if $Y=1$?

Let $X=1_{\text {have covid }}$
Let $Y=$ amount of viral RNA in a PCR test (CONTINUOUS)
What is the probability I have COVID, for an amount $Y=y$?

By Bayes's rule,

$$
\begin{aligned}
& \mathbb{P}(X=1 \mid Y=1)=\frac{\mathbb{P}(X=1) \mathbb{P}(Y=1 \mid X=1)}{\mathbb{P}(Y=1)} \\
& \mathbb{P}(X=1 \mid Y=2.1) \\
& \mathbb{P} \frac{\mathbb{P}(X=1) P(Y=2.1) X=1)}{\mathbb{P}(Y=2.1)}
\end{aligned}
$$

TODAY
§5.1, 5.2. Bayes's rule done right
§4. Measuring how well a model fits the data (* non-examinable)
WEDNESDAY
§6. Applying Bayes's rule computationally
Climate challenge
FRIDAY
§8. Bayesianism

For questions or feedback, l'll be in the café after the lecture.

Bayes's rule

For two discrete random variables X and Y,

$$
\mathbb{P}(X=x \mid Y=y)=\frac{\mathbb{P}(X=x) \mathbb{P}(Y=y \mid X=x)}{\mathbb{P}(Y=y)} \text { when } \mathbb{P}(Y=y)>0
$$

For two discrete or continuous random variables X and Y,

$$
\operatorname{Pr}_{X}(x \mid Y=y)=\frac{\operatorname{Pr}_{X}(x) \operatorname{Pr}_{Y}(y \mid X=x)}{\operatorname{Pr}_{Y}(y)} \text { when } \operatorname{Pr}_{Y}(Y)>0
$$

```
def rxy():
    x = np.random.randint(low=-5, high=6) # from -5 to +5 inclusive
    y = np.random.binomial(n=6, p=(x/6)**2)
    return (x,y)
```

detn. of cond. prob.
The joint pmf of (X, Y)
$\operatorname{Pr}_{X, Y}(x, y)=\mathbb{P}(X=x, Y=y)=\mathbb{P}(X=x) \mathbb{P}(Y=y \mid X=x)=\frac{1}{11} \times\binom{ 6}{y}\left[\left(\frac{x}{6}\right)^{2}\right]^{y}\left[1-\left(\frac{x}{6}\right)^{2}\right]^{6-y}$

Marginal random variables

Code to plot the joint pmf
xy_samp = [rxy() for _ in range(1000)] plt.hist2d(xy_samp)

The marginal of Y
$\operatorname{Pr}_{Y}(y)=\mathbb{P}(Y=y)$

$$
\begin{aligned}
& =\sum_{x} \mathbb{P}(X=x, Y=y) \quad \text { by the sum Rule } \\
& =\sum_{x} \operatorname{Pr}_{X, Y}(x, y)
\end{aligned}
$$

Code to plot the marginal pmf

y_samp $=$ [y for (x, y) in $x y$ _samp $] \leftarrow$ i.e. just throw away the x values plt.hist(y_samp)


```
```

def rxy():

```
```

def rxy():
x = np.random.randint(low=-5, high=6) \# from -5 to +5 inclusive
x = np.random.randint(low=-5, high=6) \# from -5 to +5 inclusive
y = np.random.binomial(n=6, p=(x/6)**2)
y = np.random.binomial(n=6, p=(x/6)**2)
return (x,y)

```
```

 return (x,y)
    ```
```

We can think of " X conditional on $Y=3$ " as a random variable ...

We've provided a valid probability mass function:

$$
p m f_{3}(\cdot) \geqslant 0 \quad \sum_{x} \operatorname{pmf}_{3}(x)=1
$$

$\mathbb{P}(X=x \mid Y=3)=\frac{\mathbb{P}(X=x, Y=3)}{\mathbb{P}(Y=3)}=\frac{\operatorname{Pr}_{X, Y}(x, 3)}{\operatorname{Pr}_{Y}(3)}$
$\operatorname{pmf}_{3}(x)$
i.e. take the $Y=3$ row, then rescale it to sum to 1

Sample space: $\Omega=\{-5,-4, \cdots, 4,5\} \begin{array}{r} \\ \text { same as for } x .\end{array}$
Code to generate values from it:

```
def rx_given_y():
    while True:
        x,y = rxy()
        if y == 3: break
        def rx_given_y():
    \Omega={-5,\ldots,5}
    p = [pmf(x) for x in \Omega]
    return x
```

def ry():
$x=n p . r a n d o m . r a n d i n t(l o w=-5$, high =6)
\# from -5 to +5 inclusive

$$
\Theta \sim u[0,1]
$$

$y=n p$. random. $\operatorname{binomial}(n=6, p=(x / 6) * * 2)$ return (x, y)

$$
x \sim \operatorname{Bin}(4, \pi)
$$

We define the conditional random variable, written $(X \mid Y=y)$, by specifying its likelihood:
comonlyunithen $P_{r_{x}}(x \mid Y=y)$
def rx_given_y():
$\Omega=\{-5, \ldots, 5\}$
$p=[p m f(x)$ for x in $\Omega]$
return $n p$. random. choice ($\Omega, \mathrm{p}=\mathrm{p}$)

Recall: pdf and cdf for continuous random variables

Definition of continuous RV
A random variable X is continuous if there is a probability density function (PDF), $f(x) \geq 0$ such that for $-\infty<x<\infty$:
$\mathbf{P}[a \leq x \leq b]=\int_{a}^{b} f(x) d x$
To preserve the axioms that guarantee that $\mathbf{P}[a \leq X \leq b]$ is a probability, the following properties must hold:
$0 \leq \mathbf{P}[a \leq X \leq b] \leq 1$
$\mathbf{P}[-\infty<X<\infty]=1 \quad\left(=\int_{-\infty}^{\infty} f(x) d x\right)$

- Note: we also write $f(x)$ as $f_{x}(x)$.
- In continuous world, every RV has a PDF: its relative value wrt to other
possible values. possible values.
- Integrate $f(x)$ to get probabilities.

Joint Distributions of Continuous Variables

Random variables X and Y have a joint continuous distribution if for some function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ and for all numbers $a_{1} \leq b_{1}$ and $a_{2} \leq b_{2}$,
$\mathbf{P}\left[a_{1} \leq X \leq b_{1}, a_{2} \leq Y \leq b_{2}\right]=\int_{a_{1}}^{b_{1}} \int_{a_{2}}^{b_{2}} f(x, y) d x d y$.
The function f has to satisfy $f(x, y) \geq 0$ for all x and y, and $\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x, y) d x d y=1$. We call f the joint probability density.

For a continuous random variable X

$$
\begin{aligned}
\mathbb{P}\left(x_{1} \leq X \leq x_{2}\right) & =\int_{x=x_{1}}^{x_{2}} \operatorname{Pr}_{X}(x) d x \\
\operatorname{Pr}_{X}(x) & =\frac{d}{d x} \mathbb{P}(X \leq x)
\end{aligned}
$$

For a pair of continuous random variable X and Y

$$
\begin{aligned}
\mathbb{P}\left(x_{1} \leq X \leq x_{2} \text { and } y_{1} \leq Y \leq y_{2}\right) & =\int_{x=x_{1}}^{x_{2}} \int_{y=y_{1}}^{y_{2}} \operatorname{Pr}_{X, Y}(x, y) d x d y \\
\operatorname{Pr}_{X, Y}(x, y) & =\frac{\partial^{2}}{\partial x \partial y} \mathbb{P}(X \leq x \text { and } Y \leq y)
\end{aligned}
$$

Joint distribution and marginals (continuous case)

The marginal of Y

$$
\operatorname{Pr}_{Y}(y)=\int_{x} \operatorname{Pr}_{X, Y}(x, y) d x
$$

Take the $Y=0.6$ slice of the joint pdf, then rescale it so it integrates to 1
i.e. so we get a legitimate pdf.

We define the conditional random variable
$(\boldsymbol{X} \mid \boldsymbol{Y}=\boldsymbol{y})$ by specifying its likelihood:

$$
\operatorname{Pr}_{X}(x \mid Y=y)=\frac{\operatorname{Pr}_{X, Y}(x, y)}{\operatorname{Pr}_{Y}(y)}
$$

Bayes's rule

$$
\begin{aligned}
\operatorname{Pr}_{x}(x \mid Y=y)=\frac{\operatorname{Pr}_{x, y}(x, y)}{\operatorname{Pr}_{y}(y)}
\end{aligned} \quad \operatorname{Pr}_{y}(y \mid x=x)=\frac{\operatorname{Pr}_{x, y}(x, y)}{\operatorname{Pr}_{x}(x)}
$$

Bayes's rule is true for any pair of random variables X, Y.
It's only useful in "sequential models" i.e. when the question tells us $\operatorname{Pr}_{X}(x)$ and $\operatorname{Pr}_{Y}(y \mid X=x)$.

Bayes's rule for discrete or continuous random variables

For two random variables X and Y,

$$
\operatorname{Pr}_{X}(x \mid Y=y)=\frac{\operatorname{Pr}_{X}(x) \operatorname{Pr}_{Y}(y \mid X=x)}{\operatorname{Pr}_{Y}(y)} \text { when } \operatorname{Pr}_{Y}(y)>0
$$

In practice, we use it as

Exercise 5.2.1
Consider the pair of random variables (X, Y) generated by def ry (σ):
$x=n p . r a n d o m . u n i f o r m(-1,1)$
$y=n p . r a n d o m . n o r m a l(l o c=x * * 2$, scale $=\sigma$)
return (x, y)
Or, in maths notation,

Calculate $\operatorname{Pr}_{X}(x \mid Y=y)$.

$$
\left\{\begin{array}{c}
\int_{-1}^{1} k^{\prime} e^{-\left(x^{2}-y\right)^{2} / 2 \sigma^{2}} d x=1 \\
\Rightarrow k^{\prime}=\frac{1}{\int_{-1}^{1} e^{-\left(x^{2}-y\right)^{2} / 2 \sigma^{2}} d x} \\
=\langle y u c k /\rangle
\end{array}\right.
$$

$$
\begin{aligned}
& \operatorname{Pr}_{X}(x)=\frac{1}{2} \quad \text { since } x \sim u[-1,1] \\
& \operatorname{Pr}_{Y}(y \mid X=x)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\left(y-x^{2}\right)^{2} / 2 \sigma^{2}} \\
& \left.\operatorname{Pr}_{X}(x) y=y\right)=\kappa \operatorname{Pr}_{X}(x) \operatorname{Pr}_{Y}(y \mid X=x)=k \frac{1}{2} \frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\left(y-x^{2}\right)^{2} / 2 \sigma^{2}}
\end{aligned}
$$

function of x
$=k^{\prime} e^{-\left(y-x^{2}\right)^{2} / 2 \sigma^{2}}$
where k^{\prime} hay non -x terms.
$=k^{\prime} e^{-\left(x^{2}-y\right)^{2} / 2 \sigma^{2}}$ to remind me iris a function of x.

