| tossed four coins
and got one head.

Using a Bin(n, p) model, | estimate
the probability of heads is p = 25%

| tossed twelve coins
and got three heads.

Using a Bin(n, p) model, | estimate
the probability of heads is p = 25%

But surely, the more data we

have, the more confident we
should be!




“This is a HOmph speed
imit, with probability 98%."

N _/
N

Neural networks tell us
probabilities, but they don’t
tell us their confidence.

No one has worked out how
to extract confidences from
neural networks. But, in
Bayesian statistics, we do
know how to ...



Baye’s rule

Data from a population sample of 100,000 people:

test +ve test -ve
gotCOVID | 376 24
notgotCOVID | 996 98,604

What are these probabilities?
= [P(have COVID | test +ve)
= [P(have COVID | test —ve)

Let’s rewrite this data as a probability model:

Let X = 1phave covip and let Y = liegttve

X ~ Bin(1,0.004)
if X == 1:

Y~ Bin(1, 0.94)
else:

Y~ Bin(1,0.01)

PX=1|Y=1)
CPX=DPY=1]X=1)
B P(Y = 1)

B 0.004 x 0.94
"~ 0.004 X 0.94 + 0.996 x 0.01




Reverend Thomas
Bayes, 1/01-1/61

Bayes’s rule for random variables

PX=x)P(Y =y|X =x)
P(Y =y)

P, (x) Py (g 1K=
L) . ) YT T
Pr(x|Y=y) - =

Pry (y)

PX=x|Y=y)=

Bayesianism
Whenever there’s an unknown parameter,

you should express your uncertainty about it
by treating it as a random variable.



By using random variables for unknown quantities,
we can reason about confidence.

probability of
heads, unknown

% @ We don't know the value of 0, but
Q?

we'll assume we know its distribution.

e.g. to express complete ignorance,
® ~ Uniform[O,l]

v

X We observed X = 1

CRONoJC!

number of heads

from 4 coin tosses
We can vse Bayes's rule to work out
how confident we are about the
unknown parameter’s value ...

P(0 €[20%,30%] | X =1) =21%



A more sophisticated way to reason about confidence
is by using likelihood functions.

@) 3 () ~ ufo,1]

A

CRONoJC!

X ~ Bin(n, O)

CRONCNE!

0.0 0.5 1.0 0.0

1.0



The data you see will affect your
posterior belief about the parameter.

prior belief data . posterior belief
PF@(@) X PI'@(H'X = X)

@73 ‘

PO € [.2,.3] | data) = 21%
®
© A tighter
0.0 0.5 1.0 0.0 0.5 1.0 posterior
6 | > distribution for O

means we are
more confident
about its valve.

Lol
CRcY-Yo!

@006
®6 006

P(© € [.2,.3] | data) = 33%

0.0 0.5 1.0 0.0 0.5 1.0 J



How does Bayes’s rule apply to continuous random variables?

Let X = lhave covip By Bayes's rule,

LetY =1
e test+ve PX=1DPY=1|X=1)
PX=1|Y=1)=

P(Y = 1)

What is the probability | have COVID, i.e. X =1,ifY = 1?

Let X = lhave covip
Let Y = amount of viral RNA in a PCR test (CONTINUOUS) PX =1y =2.1) =

What is the probability | have COVID, for an amount Y = y?

This version of Bayes's rule doesn't make
sense for continuous random variables!



TODAY
§5.1, 5.2. Bayes’s rule done right

§4. Measuring how well a model fits the data (* non-examinable)

WEDNESDAY
§6. Applying Bayes’s rule computationally

Climate challenge

FRIDAY
SEREEVENERIN

For questions or feedback, I'll be in the café after the lecture.



For two discrete random variables X and Y,
P(X =x)P(Y =y|X =x)
P(Y =y)

P(X =x|Y =y) = when P(Y =y) > 0

For two discrete or continuous random variables X and Y,

Pry(x) Pry(y|X = x)
Pry(y)

Pry(x|Y =y) = when Pry(Y) > 0



Joint distribution §5.1

def rxy():
X = np.random.randint(low=-5, high=6) —5 _to #¢
y = np.random.binomial(n=6, p=(x/6)**2)
return (x,y)

-4 —2 0 2 4

ﬁfﬂ-4cm°Per’ | (6) [(E)ZJ" [|'(%)2]6'y
el ol K1) (g =) PCYEglx=x) o (y) LOS

Code to plot the joint pmf
xy_samp = [rxy() for _ in range(1000)]
plt.hist2d(xy_samp)



Marginal random variables

0.10- def rxy():

0.05 ] X = np.random.randint(low=-5, high=6)
y = np.random.binomial(n=6, p=(x/6)**2)
0.00 -

return (x,y)

.
N &
0 -

4 2 0 2 4 000 025
X

The joint pmf of (X,Y)

Pryy(x,y) =PX =x,Y =) The marginal of Y
Pry(y) =P(Y =y)
:Z PX =x,Y=y)
X
= Z Pryy(x,y)
X
Code to plot the joint pmf Code to plot the marginal pmf
xy_samp = [rxy() for _ in range(1000)] y_samp = [y for (x,y) in xy_samp]

plt.hist2d(xy_samp) plt.hist(y_samp)



Conditional random variables

return (x,y)

OO R
X conditionalonY =3
. . . ]P)(X = x,Y = 3) _ Prxly(x, 3)
PX=xIY =3 =—F5 =3 = PrhQ)
m¢, (%) 7
privs i.e. take the Y=3 row,

then rescale it to sum to 1

0.2+ def rxy():
oiid x = np.random.randint(low=-5, high=6)
0.0 -

y = np.random.binomial(n=6, p=(x/6)**2)

We can think of “X conditionalonY = 3”
as a random variable ...

We’ve provided a valid probability mass function:

PME, () %0 = prfa(x) =1

of
Sample space: __(2 = g"'sl - 4 “‘;C'LMZ"E;{" K.

Code to generate values from it:

def rx_given_y(): def rx_given_y():
while True: Q= {-5,...,5}
X,y = rxy() p = [pmf(x) for x in Q]
if y == 3: break return np.random.choice(Q, p=p)

return X



Conditional random variables

0.2 4
0.1+
0.0 -

def rxy():

X = np.random.randint(low=-5, high=6) @ ~U CO,IJ
y = np.random.binomial(n=6, p=(x/6)**2)
return (x,y)

X IU'E%V\(JT,QQ

6_
4_

y -.......-....-..-............:
I PR e
01 L

-4 -2 0 2 4
X

We define the conditional random
variable, written (X|Y = y), by

specifying its likelihood: T““‘m”z/w‘(';azgw e prf

/ .
. PrX,Y (x, y) rescade It
o= 6

def rx_given_y():

et A W CIREN) o 2 Gonfisd for x 10

return np.random.choice(Q, p=p)



Recall: pdf and cdf for continuous random variables

Definition of continuous RV

Continuous random variable
A random variable X is continuous if there is a probability density

function (PDF), f(x) > 0 such that for —oc < x < oot H H
et (PO f = 0 suehhatior = < x For a continuous random variable X
P[angb}:tL f(x)dx xz
To preserve the axioms that guarantee that P[a < X < b]isa —
probability, the following properties must hold: ]:FD (xl S X S xZ) - PrX (x) dx
0<Pla<X<b]<1 x:xl
P[00 <X <o [ d
Pry(x) = —P(X < x)
= Note: we also write f(x) as fx(x). dx
= In continuous world, every RV has a PDF: its relative value wrt to other
possible values.
= Integrate f(x) to get probabilities.
Joint Distributions of Continuous Variables
Definition . . .
Random variables X and Y have a joint continuous distribution if for FO r a pa I r Of CO ntl n u Ou S ra n d O m Va rI a b | e X a n d Y

some function f : R? — R and for all numbers a; < b; and @ < by,

X2 Y2
Pl sxsoasvsuls [ oo P(x; <X<x; and y; Y <y,) = j j Pryy(x,y) dx dy
X=X1YY=Y1
02

The function f has to satisfy f(x,y) > 0 for all x and y, and
25 [72 f(x, y)dxdy = 1. We call f the joint probability density.

PI‘X’y(X, y) = m [P)(X <xandY < y)

As in one-dimensional case we switch from F to f by differentiating (or integrating):

&
~ 9xdy

F(a,b) = /j ) /f i f(x,y)dxdy  and f(x,y)

F(x.y)




Joint distribution and marginals (continuous case)

1.0

0.5

0.0

1.25

\
1.00 B
R ___.4. <

0.75 b \
y 0.50 E

- >
0.00 1
-

-0.25

The joint pdf of (X,Y)
Pryy(x,y)

def rxy():
X = np.random.uniform(-1,1)
y = np.random.normal (loc=x*%*2, scale=0.1)

The marginal of Y

Pry(y) :J Pryy(x,y) dx

X




Conditional random variables (continuous case)

0.6
044
0.2 1

00! \>,~" | def rxy():
1.251 X = np.random.uniform(-1,1)
1.00 - y = np.random.normal (loc=x*%*2, scale=0.1)

9731 return (x,y)
y 0.50 A
0.25 A

0.00

—0.25 1

We define the conditional random variable
(X|Y = y) by specifying its likelihood:

Pryy(x,y)
Pry(xl¥ =y) = =0 °o5




Bayes’s rule

iiii | izz I—
Y gnr ; ﬁ Y o \
Pr (> ly:j) - P;,v /7’7\ Pry [_‘] (s(:x) - Pfx,v ("/73
X
PrY (7) Pf‘x (x\

Pr (xl\/-‘j) - b (75\7) _ Pfx (>¢) Pfy (y | X =)

G 0) Pr, (y)

Bayes’s rule is true for any pair of random variables X, Y.
It’s only useful in “sequential models” i.e. when the question tells us Pry(x) and Pry (y|X = x).



For two random variables X and Y,

Pry (x) Pry (y|X = x)

when Pry(y) > 0
Pry(y) Y

Pry(x|Y =y) =

In practice, we use it as

PFX;CW =y) = k Pry(x) Pry (y|X = x)
Pr(xl‘/-y)

] Pc (>)d= =1
then figure out k so that Pry (- |[Y = y) @ ¢o thet xf (X(v-y)

is a legitimate likelihood function



Exercise 5.2.1
Consider the pair of random variables (X,Y) generated by

def rxy(o):
X = np.random.uniform(-1,1)
y = np.random.normal (loc=x**2, scale=0)

return (x,y)
Or, in maths notation,
X ~U[-1,1], Y ~ N(X2,0%)
3

Calculate Pry(x | Y = y).

Prey= 3 s x~wUW) S

- (4= %) /22

Pr X=x)= —
1
Pry(x|Y =y) =k Pry(x) Pry(y|X =x) = K
(cuv\ch'wé? x )
= K

)
-
N
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