
In the mid-1980s two powerful new algorithms for fitting data became available: 

neural nets and decision trees. A new research community using these tools 

sprang up. Their goal was predictive accuracy. The community consisted of 

young computer scientists, physicists and engineers plus a few aging statisticians. 

They began using the new tools in working on complex prediction problems 

where it was obvious that data models were not applicable: speech recognition, 

image recognition, nonlinear time series prediction, handwriting recognition, 

prediction in financial markets.

There are two cultures in the use of statistical modeling to reach conclusions from data.

▪ One assumes that the data are generated by a given [probabilistic] data model.

▪ The other uses algorithmic models and treats the data mechanism as unknown.

The statistical community has been committed to the almost exclusive use of data 

models. This commitment has led to irrelevant theory, questionable conclusions, and has 

kept statisticians from working on a large range of interesting current problems. 

Statistical modeling: the two cultures
Leo Breiman

Statistical Science, 2001



A histogram of radial velocities of 120 galaxies

Speeds of galaxies in the Corona Borealis region
Postman, Huchra, Geller (1986)

How might you complete this code?

def rgalaxy(...):
# TODO: return a single random galaxy speed

def rgalaxies(size):
    return [rgalaxy(…) for _ in range(size)]

§1.1



George Box
1919–2013

“All models are wrong,
“but some are useful”

so, don’t get hung up about 
coming up with the “right” 
model – just charge ahead 
and invent something!



Speeds of galaxies in the Corona Borealis region
Postman, Huchra, Geller (1986)

§1.1

p = [0.28, 0.54, 0.18]
μ = [9740, 21300, 15000]
σ = [340, 1700, 10600]

How would you write 
this in random variable 
notation?

𝑋𝑖 ∼ ⋯

def rgalaxy(p,μ,σ):
    k = np.random.choice([0,1,2], p=p)
    x = np.random.normal(loc=μ[k], scale=σ[k])
    return x

def rgalaxies(size, p,μ,σ):
    return [rgalaxy(p,μ,σ) for _ in range(size)]



Speeds of galaxies in the Corona Borealis region
Postman, Huchra, Geller (1986)

§1.1

def rgalaxy(p,μ,σ):
    k = np.random.choice([0,1,2], p=p)
    x = np.random.normal(loc=μ[k], scale=σ[k])
    return x

def rgalaxies(size, p,μ,σ):
    return [rgalaxy(p,μ,σ) for _ in range(size)]



There are standard numerical random variables that you should know:

DISCRETE RANDOM VARIABLES

Binomial
𝑋~Bin(𝑛, 𝑝) 

ℙ 𝑋 = 𝑥 =
𝑛
𝑥

𝑝𝑥 1 − 𝑝 𝑛−𝑥

𝑥 ∈ {0,1, … , 𝑛}

For count data, e.g. number of heads in 𝑛 coin tosses

Poisson
𝑋~Pois(𝜆) 

ℙ 𝑋 = 𝑥 =
𝜆𝑥𝑒−𝜆𝑥

𝑥!
𝑥 ∈ {0,1, … }

For count data, e.g. number of buses passing a spot

Categorical
𝑋~Cat( 𝑝1, … , 𝑝𝑘 ) 

ℙ 𝑋 = 𝑥 = 𝑝𝑥

𝑥 ∈ {1, … , 𝑘}
For picking one of a fixed number of choices

CONTINUOUS RANDOM VARIABLES

Uniform
𝑋~𝑈[𝑎, 𝑏] 

pdf 𝑥 =
1

𝑏 − 𝑎
𝑥 ∈ [𝑎, 𝑏]

A uniformly-distributed floating point value

Normal / Gaussian
𝑋~𝑁(𝜇, 𝜎2) 

pdf 𝑥 =
1

2𝜋𝜎2
𝑒− 𝑥−𝜇 2/2𝜎2

𝑥 ∈ ℝ

For data about magnitudes, e.g. temperature or height

Pareto
𝑋~Pareto(𝛼) 

pdf 𝑥 = 𝛼 𝑥−(𝛼+1)

𝑥 ≥ 1
For data about “cascade” magnitudes, e.g. forest fires

Exponential
𝑋~Exp(λ) 

pdf 𝑥 = 𝜆 𝑒−𝜆𝑥

𝑥 > 0
For waiting times, e.g. time until next bus

Beta
𝑋~Beta(𝑎, 𝑏) 

pdf 𝑥 ∝ 𝑥𝑎−1 1 − 𝑥 𝑏−1

𝑥 ∈ (0,1)
Arises in Bayesian inference

§1.2



Speeds of galaxies in the Corona Borealis region
Postman, Huchra, Geller (1986)

def rgalaxy(p,μ,σ):
    k = np.random.choice([0,1,2], p=p)
    x = np.random.normal(loc=μ[k], scale=σ[k])
    return x

When we fit this model (i.e. learn 
the parameters), it tells us the 
location and shape of the clusters.

§1.1



data
science

What is data science? What’s the difference between 
data science and machine learning?

algorithmic
ML

probabilistic ML,
generative AI

building 
models 

from data

What looks like “design an 
ML algorithm to find 
clusters” …

can be restated as 
“formulate a suitable 
probability model and 
fit it”



§1.5 Better notation for likelihood §1.5

by maximizing the likelihood

1.5. Find an expression for the likelihood



The likelihood function for a random variable 𝑋 
is written Pr𝑋 𝑥  and defined as

 Pr𝑋 𝑥 = ℙ(𝑋 = 𝑥) in the case where 𝑋 is discrete

and as

 Pr𝑋 𝑥 = pdf(𝑥) in the case where 𝑋 is continuous
  with prob. density function pdf(𝑥)

For parameterized random variables, write
 Pr𝑋(𝑥 ; 𝜃)

§1.5

X is a random variable, i.e. a function
x is a value, e.g. a floating point number



Transforms of random variables:
Pr𝑋+𝑌(0.2) or Pr𝑋2(𝑧)

The Pr𝑋(𝑥) notation keeps track of
• the random variable 𝑋
• an observation 𝑥

Pairs of random variables:
Pr𝑋,𝑌 𝑥, 𝑦

Pr𝑋,𝑌(𝑥, 𝑦) is called the joint likelihood of 𝑋 and 𝑌

Pr𝑋,𝑌 𝑥, 𝑦 = ℙ 𝑋 = 𝑥 and 𝑌 = 𝑦
 for discrete random variables

I call the RNG for X, and I call the RNG 
for Y, and I add the two outputs 
together. What’s the chance I got 0.2?

§1.5

Pr𝑋,𝑌 𝑥, 𝑦 = <something similar/>
 for continuous random variables



Exercise. Write down the joint likelihood Pr𝐾,𝑋(𝑘, 𝑥) for
    def rgalaxy(p,μ,σ):
      k = np.random.choice([0,1,2], p=p)
      return np.random.normal(loc=μ[k], scale=σ[k])

Independent random variables:
Pr𝑋,𝑌 𝑥, 𝑦 = Pr𝑋 𝑥  Pr𝑌(𝑦)

Independent identically-distributed (IID) 
sample from 𝑋:
Pr 𝑥1, … , 𝑥𝑛 = Pr𝑋 𝑥1 × ⋯ × Pr𝑋(𝑥𝑛)

Sequential generation of 𝑋 then 𝑌:
Pr𝑋,𝑌 𝑥, 𝑦 = Pr𝑋 𝑥  Pr𝑌(𝑦 ; 𝑥)

§1.5



Maximum Likelihood Estimation, again

If we've seen an outcome 𝑥, and we've proposed a probability 
model 𝑋, and if its distribution involves some unknown 
parameters 𝜃,

the maximum likelihood estimator for 𝜃 is

መ𝜃 = arg max
𝜃

Pr𝑋(𝑥 ; 𝜃)

§1.5

▪ x could be discrete or continuous
▪ x could be a single observation or a dataset with many observations

The point of the likelihood notation is so that we can write 
down a single equation and have it cover all these cases.



We’ve looked at two types of model:

Given a dataset of (𝑡𝑖 , temp𝑖) pairs, 𝑖 ∈ {1, … , 𝑛},
I’d like to learn how temperatures have been changing.

Given a dataset [𝑥1, … , 𝑥𝑛] of galaxy speeds,
I’d like to fit a probability model.

(This lets me generate new values, similar but not 
identical to the dataset.)

I’d like to fit a probability model for Temp, where 
the parameters of the distribution depend on 𝑡

supervised generative

i.e. I’d like to predict temp as a function of 𝑡.

§1.6 §1.7



Terminology for supervised learning

station yyyy mm t af rain sun tmin tmax temp

Cambridge 1985 1 1985.00 23 37.3 40.7 -2.2 3.4 0.6

Cambridge 1985 2 1985.08 13 14.6 79 -1.9 4.9 1.5

Cambridge 1985 3 1985.16 10 45.8 97.8 1.1 8.7 4.9

⋮

https://www.metoffice.gov.uk/research/climate/maps-and-data/historic-station-data

How can I PREDICT temp GIVEN t?

called the PREDICTOR variable,
or the FEATURE,
or the COVARIATE

called the RESPONSE,
or the LABEL variable

§1.7

▪ Here the response is real-valued, 
so we call it REGRESSION.

▪ If the response were categorical, 
we’d call it CLASSIFICATION.



supervised learning generative modelling

Given a dataset 𝑥1, 𝑦1 , … , (𝑥𝑛, 𝑦𝑛) where 𝑦𝑖  is the label 
in record 𝑖 and 𝑥𝑖 is the predictor variable or variables …

1. Propose a probability model for the response 𝑌, 
with likelihood

Pr𝑌(𝑦; 𝑥, 𝜃)

2. Model the dataset as independent observations; 
thus the likelihood of the dataset is

Pr dataset = ෑ
𝑖=1

𝑛

Pr𝑌(𝑦𝑖; 𝑥𝑖 , 𝜃)

3. Learn 𝜃 using maximum likelihood estimation

1. Propose a probability model i.e. a random variable 𝑋, 
with likelihood

Pr𝑋(𝑥; 𝜃)

2. Model the dataset as independent observations; 
thus the likelihood of the dataset is

Pr dataset = ෑ
𝑖=1

𝑛

Pr𝑋(𝑥𝑖; 𝜃)

3. Learn 𝜃 using maximum likelihood estimation

Given a dataset 𝑥1, … , 𝑥𝑛 …

§1.6 §1.7



Exercise 1.6.1 (Fitting a Normal distribution)
Given a numerical dataset 𝑥1, … , 𝑥𝑛, fit a Normal(𝜇, 𝜎2) 
distribution, where 𝜇 and 𝜎 are unknown.

Model for a single observation

Likelihood for a single observation

Log likelihood of the dataset

Maximize over unknown parameters

§1.6



Exercise 1.7.1 (Straight-line fit)
Given a labelled dataset 
𝑥1, 𝑦1 , … , (𝑥𝑛, 𝑦𝑛) consisting of pairs of 

numbers, fit the model

𝑌𝑖 ∼ 𝑎 + 𝑏 𝑥𝑖 + Normal(0, 𝜎2)

where 𝜎 is given and 𝑎 and 𝑏 are 
parameters to be estimated.

1
2
3
4
5
6
7
8
9
10
11

x = np.array([...])
y = np.array([...])
σ = ...

def logPr(y, x, θ):
    a,b = θ
    loglik = scipy.stats.norm.logpdf(y, loc=a+b*x, scale=σ)
    return np.sum(loglik)

initial_guess = ...

ො𝑎, ෠𝑏 = scipy.optimize.fmin(lambda θ: -logPr(y,x,θ), 
                           initial_guess)

Data from Randall Munroe, https://xkcd.com/2048/, via https://gitlab.com/b-rowlingson

Model for a single observation:

Likelihood of a single observation:

Log likelihood of the dataset:

Optimize over the unknown parameters:

§1.7



Algorithmic 
versus 
probabilistic 
machine learning*

* non-examinable

§3.1 §3.2



§3.1

ALGORITHMIC VIEW OF ML

We’re given a labelled dataset.
We want to learn to predict the label.
We do this by minimizing a loss function.



In the mid-1980s two powerful new algorithms for fitting data became available: 

neural nets and decision trees. A new research community using these tools 

sprang up. Their goal was predictive accuracy. The community consisted of 

young computer scientists, physicists and engineers plus a few aging statisticians. 

They began using the new tools in working on complex prediction problems 

where it was obvious that data models were not applicable: speech recognition, 

image recognition, nonlinear time series prediction, handwriting recognition, 

prediction in financial markets.

There are two cultures in the use of statistical modeling to reach conclusions from data.

▪ One assumes that the data are generated by a given stochastic data model.

▪ The other uses algorithmic models and treats the data mechanism as unknown.

The statistical community has been committed to the almost exclusive use of data 

models. This commitment has led to irrelevant theory, questionable conclusions, and has 

kept statisticians from working on a large range of interesting current problems. 

Statistical modeling: the two cultures
Leo Breiman

Statistical Science, 2001



𝜃

it’s our job as modellers to find 𝜃 so 
as to minimize prediction error, e.g.

pick 𝜃 to minimize 

෍
𝑖
𝐿 𝑦𝑖 , ො𝑦(𝑡𝑖)

where

𝐿 𝑦, ො𝑦 = 𝑦 − ො𝑦 2

ground truth:
Let 𝑦𝑖  be the actual observed 
temperature at time 𝑡𝑖

timepoint 𝑡

predicted 
temperature ො𝑦 
at timepoint 𝑡

§3.1



Data from http://yann.lecun.com/exdb/mnist/

Neural network classification

The MNIST database of handwritten 
images consists of records (𝑥𝑖 , 𝑦𝑖) where 
𝑥𝑖 ∈ ℝ28×28 is a greyscale image with 
28×28 pixels, and 𝑦𝑖 ∈ {0, … , 9} is the 
digit.

We’d like to predict the digit, given an 
image. How might we learn to do this?

image digit

2

1

3

1

4

§3.1

it’s our job as modellers to find 𝜃 so as to 
maximize prediction accuracy, i.e.

pick 𝜃 to minimize  

෍
𝑖
𝐿 𝑦𝑖 , ො𝑦(𝑡𝑖)

where

𝐿 𝑦, ො𝑦 = 1𝑦≠ ො𝑦
features

𝜃

5
predicted 

label ො𝑦

ground truth:
Let 𝑦𝑖  be the actual observed label in 
the dataset



Data: 𝑥1, 𝑦1 , 𝑥2, 𝑦2 , … , (𝑥𝑛, 𝑦𝑛)

Labels: 𝑦1, 𝑦2, … , 𝑦𝑛

Task: Predict the label
𝑦𝑖 ≈ 𝑓𝜃 𝑥𝑖

Training goal: Invent a loss function and 
 learn 𝜃 to minimize the prediction loss

෍
𝑖
𝐿(𝑦𝑖 , 𝑓𝜃 𝑥𝑖 )

𝑥 𝑓𝜃(𝑥)

edge weights 𝜃

Supervised Learning

§3.4



This is machine learning, too! But what are the labels, and what’s the loss function?



ALGORITHMIC VIEW OF MACHINE LEARNING

Data: 𝑥1, 𝑦1 , 𝑥2, 𝑦2 , … , (𝑥𝑛, 𝑦𝑛)

Labels: 𝑦1, 𝑦2, … , 𝑦𝑛

Task: Predict the label
𝑦𝑖 ≈ 𝑓𝜃 𝑥𝑖

Training goal: Invent a loss function and 
 learn 𝜃 to minimize the prediction loss

෍
𝑖
𝐿(𝑦𝑖 , 𝑓𝜃 𝑥𝑖 )

𝑥 𝑓𝜃(𝑥)

edge weights 𝜃

Supervised Learning Generative Modelling

Data: 𝑥1, 𝑥2, … , 𝑥𝑛

Labels: n/a

Task: learn to synthesize new values
 similar (but not identical) to those
 in the dataset, ...

Training goal: ???

§3.4



PROBABILITY MODELLER’S VIEW

𝜃

𝜃

ALGORITHMIC VIEW OF MODELLING

Goal:

minimize prediction error

Goal:

find a good-fitting distribution

random variable for 
temperature 𝑌 
at timepoint 𝑡

timepoint 𝑡

predicted 
temperature ො𝑦 
at timepoint 𝑡

timepoint 𝑡

§3.2This course teaches a different way to think of modelling …



5 with prob 45%
3 with prob 41%
6 with prob 45%

…

PROBABILITY MODELLER’S VIEW

𝜃

features
𝜃

ALGORITHMIC VIEW OF MODELLING

5
predicted 

label ො𝑦

random predicted label 𝑌

§3.2

Goal:

maximize prediction accuracy

Goal:

find a good-fitting distribution

This course teaches a different way to think of modelling …



PROBABILISTIC MACHINE LEARNING

Data: 𝑥1, 𝑦1 , 𝑥2, 𝑦2 , … , (𝑥𝑛, 𝑦𝑛)

Labels: 𝑦1, 𝑦2, … , 𝑦𝑛

Task: Predict the label
𝑦𝑖 ≈ 𝑓𝜃 𝑥𝑖

Training goal: Invent a loss function and 
 learn 𝜃 to minimize the prediction loss

෍
𝑖
𝐿(𝑦𝑖 , 𝑓𝜃 𝑥𝑖 )

𝑥 𝑓𝜃(𝑥)

edge weights 𝜃

Supervised Learning Generative Modelling

Data: 𝑥1, 𝑥2, … , 𝑥𝑛

Labels: n/a

Task: learn to synthesize new values
 similar (but not identical) to those
 in the dataset, ...

Training goal: ???

fit the probability model
Pr𝑌 𝑦 ; 𝑓𝜃(𝑥)

𝑌

MLE



random 
noise 𝑍 𝑋 = 𝑓𝜃(𝑍)

edge weights 𝜃
The output 𝑋 is a random 
variable. 
I.e. If I ran this network lots of 
times, each time with different 
noise, I get different 𝑋. I could 
plot a histogram of these outputs.

QUESTION. How could we 
even use neural networks to 
generate novel images? 
What should the input be?

§3.4

Write Pr𝑋(𝑥) for its 
likelihood function, as usual.



PROBABILISTIC MACHINE LEARNING

Data: 𝑥1, 𝑦1 , 𝑥2, 𝑦2 , … , (𝑥𝑛, 𝑦𝑛)

Labels: 𝑦1, 𝑦2, … , 𝑦𝑛

Task: Predict the label
𝑦𝑖 ≈ 𝑓𝜃 𝑥𝑖

Training goal: Invent a loss function and 
 learn 𝜃 to minimize the prediction loss

෍
𝑖
𝐿(𝑦𝑖 , 𝑓𝜃 𝑥𝑖 )

𝑥 𝑓𝜃(𝑥)

edge weights 𝜃

Supervised Learning Generative Modelling

Data: 𝑥1, 𝑥2, … , 𝑥𝑛

Labels: n/a

Task: learn to synthesize new values
 similar (but not identical) to those
 in the dataset, ...

Training goal: ???

fit the probability model
Pr𝑋 𝑥 ; 𝜃

fit the probability model
Pr𝑌 𝑦 ; 𝑓𝜃(𝑥)

𝑌

MLE MLE

edge weights 𝜃

§3.4

random 
noise 𝑍

𝑋 = 𝑓𝜃(𝑍)
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