§1.3 Maximum likelihood estimation

All of machine learning is based on a single idea:

1. Write out a probability model
2. Fit the model from data

This is behind

- A-level statistics formulae
ie. estimate the parameters
- our climate model
- ChatGPT training using Maximum Likelihood Estimation (MLE)
typically with unknown parameters

The likelihood is the probability $\frac{1}{}$ seeing the data that we actually saw.

It depends on the parameters.
Let's simply pick the parameters that maximize the likelihood!

Exercise 1.3.1 (Coin tosses)

Suppose we take a biased coin, and tossed it $n=10$ times, and observe $\underline{x}=6$ heads. Let's use the probability model

$$
X \sim \operatorname{Binom}(n, p)
$$

where p is the probability of heads. Estimate p.

Likelihood of the observed data:

$$
\begin{aligned}
l i k & =\mathbb{P}(X=x) \\
& =\binom{n}{x} p^{x}(1-p)^{n-x}
\end{aligned}
$$

Parameter that maximizes it:

$$
\begin{aligned}
& \frac{d}{d p} \text { lik }=\binom{n}{x}\left[x p^{x-1}(1-p)^{n-x}-(n-x) p^{x}(1-p)^{n-x-1}\right] \\
& \frac{d}{d p} \text { lie }=0 \quad \Rightarrow \quad \hat{p}=\frac{x}{n}
\end{aligned}
$$

There are standard numerical random variables that you should know:

DISCRETE RANDOM VARIABLES

Binomial	$\mathbb{P}(X=x)=\binom{n}{x} p^{x}(1-p)^{n-x}$	For count data, e.g. number of heads in n coin tosses
$X \sim \operatorname{Bin}(n, p)$	$x \in\{0,1, \ldots, n\}$	

CONTINUOUS RANDOM VARIABLES

Uniform
$X \sim U[a, b]$
Normal / Gaussian $X \sim N\left(\mu, \sigma^{2}\right)$

Pareto

$X \sim$ Pareto (α)
Exponential
$X \sim \operatorname{Exp}(\lambda)$
Beta
$X \sim \operatorname{Beta}(a, b)$

$$
\begin{aligned}
& \operatorname{pdf}(x)=\frac{1}{b-a} \\
& x \in[a, b]
\end{aligned}
$$

$\operatorname{pdf}(x)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-(x-\mu)^{2} / 2 \sigma^{2}}$ $x \in \mathbb{R}$
$x \geq 1$
$\operatorname{pdf}(x)=\lambda e^{-\lambda x} \quad$ For waiting times, e.g. time until next bus
$x>0$
$\operatorname{pdf}(x) \propto x^{a-1}(1-x)^{b-1} \quad$ Arises in Bayesian inference
$x \in(0,1)$
$\operatorname{pdf}(x)=\alpha x^{-(\alpha+1)} \quad$ For data about "cascade" magnitudes, e.g. forest fires
A uniformly-distributed floating point value

For data about magnitudes, e.g. temperature or height

Exercise 1.3.1 (Coin tosses)

$$
X \sim \operatorname{Binom}(n, p)
$$

where p is the probability of heads. Estimate p.

Log likelihood of the observed data:

$$
\begin{aligned}
\text { lib }= & \mathbb{P}(x=x)=\binom{n}{x} p^{x}(1-p)^{n-x} \\
\log l i k & =\log \binom{n}{x}+x \log p+(n-x) \log (1-p)
\end{aligned}
$$

Parameter that maximizes it:

$$
\begin{aligned}
& \frac{d}{d p} \log l i k=\frac{x}{p}-\frac{n-x}{1-p} \\
& \Rightarrow \quad \hat{p}=\frac{x}{n}
\end{aligned}
$$

Exercise 1.3.6 (Handling boundaries)
We throw a k-sided dice, and get the answer $x=10$.
Estimate k, using the probability model

$$
\mathbb{P}(\text { throw } x)=\frac{1}{k}, \quad x \in\{1, \ldots, k\}
$$

SANITY CHECK depend on the data? In the way wed expect it to?

SILly

$$
\begin{aligned}
\text { like }=\mathbb{P}(\text { fan } x) & =\left\{\begin{array}{cc}
\frac{1}{k} & \text { if } x \leq k \\
0 & \text { if } x>k
\end{array}=\frac{1}{k} 1_{x \leq k}\right. \\
& =\left.\frac{1}{k} I_{k \geqslant x} \underbrace{\text { in }}_{x}\right|_{k}
\end{aligned}
$$

INDICATOR FUNCTIONS
The indicator function 1_{A} is simply

$$
1_{A}=\left\{\begin{array}{l}
1 \text { if statement } A \text { is true } \\
0 \text { if statement } A \text { is false }
\end{array}\right.
$$

§1.3 Maximum likelihood estimation

It depends on the parameters.
Let's simply pick the parameters that maximize the likelihood!

Let the dataset be a list of real numbers, x_{1}, \ldots, x_{n}, all >0.
Use the probability model that says they're all independent $\operatorname{Exp}(\lambda)$ random variables, where λ is unknown. Estimate λ.

Log likelihood of the observed data:

$$
\begin{aligned}
\left.\begin{array}{ll}
\text { lik }(\text { data } \\
x_{1} \cdots x_{n}
\end{array}\right) & =\operatorname{lik}\left(x_{1}\right) \times \cdots \times l i k\left(x_{n}\right) \\
& =\left(\lambda e^{-\lambda x_{1}}\right) \times \cdots \times\left(\lambda e^{\left.-\lambda x_{n}\right)}\right. \\
& =\lambda^{n} e^{-\lambda \sum_{i=1}^{n} x_{i}}
\end{aligned} \begin{aligned}
& \text { CONTINUOUS RANDOM VARIABLES (real-valued) } \\
& \\
&
\end{aligned}
$$

$$
\log l i k=n \log \lambda-\lambda \sum_{i} x_{i}
$$

Parameter that maximizes it:

$$
\frac{d}{d \lambda} \log l i k=\frac{n}{\lambda}-\sum_{i} x_{i}=0 \Rightarrow \hat{\lambda}=\frac{n}{\sum_{i} x_{i}}
$$

Exercise 1.3.4 (Predictive models)
Consider a dataset of January temperatures, one record per year. Let t_{i} be the year for record $i=1, \ldots, n$, and let y_{i} be the temperature. Using the probability model

$$
Y_{i} \sim \operatorname{Normal}\left(\alpha+\gamma t_{i}, \sigma^{2}\right)
$$

estimate γ, the annual rate of temperature change.
Note: the question doesnit Hell us the values of α, γ, σ, so well treat Them as unknowns to be estimated.

$$
\left.\left.\begin{array}{l}
\frac{\partial \operatorname{loglik}}{\partial \alpha}=0 \\
\frac{\partial \operatorname{loglik}}{\partial \gamma}=0 \\
\frac{\partial \log l i k}{\partial \sigma}=0
\end{array}\right\} \begin{array}{l}
\text { solve these simultaneously. }
\end{array}\right\}
$$

§1.3 Maximum likelihood estimation

All of machine learning is based on a single idea:

1. Write out a probability model
2. Fit the model from data

This is behind

- A-level statistics formulae
- our climate model
- ChatGPT training

typically with unknown parameters
i.e. estimate the parameters using Maximum Likelihood Estimation (MLE)

The likelihood is
typically with unknown parameters

$\mathbb{P}($ data $)$ if our model is a discrete rand.vor.
pdf(olata) if our model is a continuous rand.var

If the data consist's of many datapoing $\left[x_{1}, \ldots, x_{n}\right]$, and our model says they're inclependent,

$$
\operatorname{lik}(d a t a)=\operatorname{lik}\left(x_{1}\right) \times \operatorname{lik}\left(x_{2}\right) \times \cdots \times \operatorname{lik}\left(x_{n}\right)
$$

It depends on the parameters.
Let's simply pick the parameters that maximize the likelihood!

Exercise 1.3.4 (Predictive models)

Consider a dataset of January temperatures, one record per year. Let t_{i} be the year for record $i=1, \ldots, n$, and let y_{i} be the temperature. Using the probability model

$$
Y_{i} \sim \operatorname{Normal}\left(\alpha+\gamma t_{i}, \sigma^{2}\right)
$$

estimate γ, the annual rate of temperature change.

What would happen if we just solved one equation, for the parameter we're interested in?

$$
\frac{d}{d \gamma} \log \operatorname{lik}=0
$$

We get the answer

$$
\hat{\gamma}=\frac{\Sigma_{i} t_{i}\left(y_{i}-\alpha\right)}{\Sigma_{i} t_{i}^{2}} \quad \begin{aligned}
& \text { Useless - if } \\
& \text { involves } \alpha, \\
& \text { whose value I } \\
& \text { doit know, }
\end{aligned}
$$

Three views of a probability model

likelihood

$$
\begin{aligned}
& \text { Temp }_{i} \sim N\left(\text { pred }_{i}, \sigma^{2}\right) \\
& \text { where pred }=\alpha \sin \left(2 \pi\left(t_{i}+\phi\right)\right) \\
&+c+\gamma t_{i}
\end{aligned}
$$

Exercise

$$
\begin{aligned}
& \operatorname{Temp}_{i} \sim \alpha \sin \left(2 \pi\left(t_{i}+\varphi\right)\right)+c+\gamma t_{i}+\operatorname{Normal}\left(0, \sigma^{2}\right) \\
& i \in\{1, \ldots, n\}
\end{aligned}
$$

The observed data is $\left[\right.$ temp $p_{1}, . .$, temp $\left._{n}\right]$. Find an expression for the \log likelihood.

$$
\begin{aligned}
& \operatorname{lik}(\text { dara })=\operatorname{lik}(\text { temp }) \times \cdots \times\left(\text { irk }\left(\text { temp } n_{n}\right)\right. \\
&=\left(\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{\left.-\frac{(\text { temp }- \text { pred, }}{}\right)^{2} / 2 \sigma^{2}}\right) \times \cdots \\
& \text { Watch out for copy-paste-itis! We w }
\end{aligned}
$$

Watch out for copy-paste-itis. We want the likelihood of seeing tempi, for the random variable $\operatorname{Temp}_{1} \sim N\left(\operatorname{pred}_{1}, \sigma^{2}\right)$. Don't just paste in the formula from the random variable reference sheet,

$$
\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-(x-\mu)^{2} / 2 \sigma^{2}}
$$

$$
\log \operatorname{lik}\left(\text { data) }=-\frac{n}{2} \log \left(2 \pi \sigma^{2}\right)-\frac{1}{2 \sigma^{2}} \sum\left(\text { tempi-predi) }{ }^{2}\right.\right.
$$

There are standard numerical random variables that you should know:

DISCRETE RANDOM VARIABLES

Binomial $x \sim \operatorname{Bin}(n, p)$	$\begin{aligned} & \mathbb{P}(X=x)=\binom{n}{x} p^{x}(1-p)^{n-x} \\ & x \in\{0,1, \ldots, n\} \end{aligned}$	For count data, e.g. number of heads in n coin tosses
Poisson $X \sim \operatorname{Pois}(\lambda)$	$\begin{aligned} & \mathbb{P}(X=x)=\frac{\lambda^{x} e^{-\lambda x}}{x!} \\ & x \in\{0,1, \ldots\} \end{aligned}$	For count data, e.g. number of buses passing a spot
Categorical $x \sim \operatorname{Cat}\left(\left[p_{1}, \ldots, p_{k}\right]\right)$	$\begin{aligned} & \mathbb{P}(X=x)=p_{x} \\ & x \in\{1, \ldots, k\} \end{aligned}$	For picking one of a fixed number of choices

CONTINUOUS RANDOM VARIABLES

Uniform
$X \sim U[a, b]$
Normal / Gaussian $X \sim N\left(\mu, \sigma^{2}\right)$

Pareto

$X \sim$ Pareto (α)
Exponential
$X \sim \operatorname{Exp}(\lambda)$
Beta
$X \sim \operatorname{Beta}(a, b)$

$$
\begin{aligned}
& \operatorname{pdf}(x)=\frac{1}{b-a} \\
& x \in[a, b]
\end{aligned}
$$

$\operatorname{pdf}(x)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-(x-\mu)^{2} / 2 \sigma^{2}}$ $x \in \mathbb{R}$
$x \geq 1$
$\operatorname{pdf}(x)=\lambda e^{-\lambda x} \quad$ For waiting times, e.g. time until next bus
$x>0$
$\operatorname{pdf}(x) \propto x^{a-1}(1-x)^{b-1} \quad$ Arises in Bayesian inference
$x \in(0,1)$
$\operatorname{pdf}(x)=\alpha x^{-(\alpha+1)} \quad$ For data about "cascade" magnitudes, e.g. forest fires
A uniformly-distributed floating point value

For data about magnitudes, e.g. temperature or height

There are standard numerical random variables that you should know:

Useful properties of the Normal distribution:

- If we rescale a Normal, we get a Normal
- If we add independent Normals, we get a Normal

$$
\begin{aligned}
& N\left(\mu, \sigma^{2}\right)+N\left(\nu, \rho^{2}\right) \sim N\left(\mu+\nu, \sigma^{2}+\rho^{2}\right) \\
& \text { assuming the two Normals are independent. }
\end{aligned}
$$

$\underset{X \sim N\left(\mu, \sigma^{2}\right)}{\text { Normal Gaussian }} \operatorname{pdf}(x)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-(x-\mu)^{2} / 2 \sigma^{2}} \quad$ For data about magnitudes, e.g. temperature or height

This is behind

- A-level statistics formulae
our climate model
- ChatGPT training

§1.4 Numerical optimization

1. Write out a probability model
2. Fit the model from data

All of machine learning is based on a single idea:

using maximum likelihood estimation with numerical optimization
(since the likelihood function is usually far too complex for exact optimization)

\longrightarrow

- bral Numerical optimization with Python / scipy minimum To find them ${ }^{+}$of a smooth function $f: \mathbb{R}^{K} \rightarrow \mathbb{R}$, import scipy.optimize def $f(x)$:
return ...

```
x
\hat{x}}=\mathrm{ scipy.optimize.fmin(f, x
```


The initial guess will influence which local minimum the fmin ends up finding.

Exercise 1.4.2 (Constraints / softmax transformation)
Find the maximum of

$$
f\left(p_{1}, p_{2}, p_{3}\right)=0.2 \log p_{1}+0.5 \log p_{2}+0.3 \log p_{3}
$$

over $p_{1}, p_{2}, p_{3} \in(0,1)$ such that $p_{1}+p_{2}+p_{3}=1$.
Cunning trick:
ins read of finding max sven $\left(p_{1}, p_{2}, p_{3}\right)$ such that $p_{1}+p_{2}+p_{3}=1$,
nell instead find max wen $\left(s_{1}, s_{2}, s_{3}\right) \in \mathbb{R}^{3}$
and get $p_{i}=\frac{e^{S_{i}}}{e^{S_{1}}+e^{S_{2}}+e^{S_{3}}}$
This forces $p_{i} \in(0,1), \quad p_{1}+p_{2}+p_{3}=1$

```
def f(p):
    p},\mp@subsup{p}{2}{},\mp@subsup{p}{3}{}=
    return 0.2*np.log(p
def softmax(s):
    p = np.exp(s)
    return p / np.sum(p)
ŝ = scipy.optimize.fmin(lambda s: -f(softmax(s)), [0,0,0])
s s softmax(s)
```

Optimization terminated successfully. Current function value: 1.02965. Iterations: 63.
Function evaluations: 120
array ([0.19999474, 0.49999912, 0.30000614])

Exercise 1.4.1 (Positivity constraint)
Find the maximum over $\sigma>0$ of

$$
f(\sigma)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-3 / 2 \sigma^{2}}
$$

How does it work?

Animations by Lili Jiang, Towards Data Science

GRADIENT DESCENT
Find the gradient of the
function, and take a step in the direction of steepest descent

Visualizing the Loss Landscape of Neural Nets

Li, Xu, Taylor, Studer, Goldstein (2018)
https://arxiv.org/abs/ 1712.09913

```
    Andrej Karpathy $
    @karpathy
Gradient descent can write code better than
you. I'm sorry.
3:56 PM - 4 Aug 2017
343 Retweets 1,161 Lkes 贯)O20)
○ 72 t. 343 O 1.2k ill
```

Software 1.0 is code we write. Software 2.0 is code written by the optimization based on an evaluation criterion (such as "classify this training data correctly"). It is likely that any setting where the program is not obvious but one can repeatedly evaluate the performance of it (e.g. - did you classify some images correctly? do you win games of Go?) will be subject to this transition, because the optimization can find much better code than what a human can write.

