
§1.3 Maximum likelihood estimation §1.3

Exercise 1.3.1 (Coin tosses)
Suppose we take a biased coin, and tossed it 𝑛 = 10 times,
and observe 𝑥 = 6 heads. Let’s use the probability model

𝑋 ~ Binom(𝑛, 𝑝)

where 𝑝 is the probability of heads. Estimate 𝑝.

Likelihood of the observed data:

Parameter that maximizes it:

§1.3

There are standard numerical random variables that you should know:

DISCRETE RANDOM VARIABLES

Binomial
𝑋~Bin(𝑛, 𝑝)

ℙ 𝑋 = 𝑥 =
𝑛
𝑥

𝑝𝑥 1 − 𝑝 𝑛−𝑥

𝑥 ∈ {0,1, … , 𝑛}

For count data, e.g. number of heads in 𝑛 coin tosses

Poisson
𝑋~Pois(𝜆)

ℙ 𝑋 = 𝑥 =
𝜆𝑥𝑒−𝜆𝑥

𝑥!
𝑥 ∈ {0,1, … }

For count data, e.g. number of buses passing a spot

Categorical
𝑋~Cat(𝑝1, … , 𝑝𝑘)

ℙ 𝑋 = 𝑥 = 𝑝𝑥

𝑥 ∈ {1, … , 𝑘}
For picking one of a fixed number of choices

CONTINUOUS RANDOM VARIABLES

Uniform
𝑋~𝑈[𝑎, 𝑏]

pdf 𝑥 =
1

𝑏 − 𝑎
𝑥 ∈ [𝑎, 𝑏]

A uniformly-distributed floating point value

Normal / Gaussian
𝑋~𝑁(𝜇, 𝜎2)

pdf 𝑥 =
1

2𝜋𝜎2
𝑒− 𝑥−𝜇 2/2𝜎2

𝑥 ∈ ℝ

For data about magnitudes, e.g. temperature or height

Pareto
𝑋~Pareto(𝛼)

pdf 𝑥 = 𝛼 𝑥−(𝛼+1)

𝑥 ≥ 1
For data about “cascade” magnitudes, e.g. forest fires

Exponential
𝑋~Exp(λ)

pdf 𝑥 = 𝜆 𝑒−𝜆𝑥

𝑥 > 0
For waiting times, e.g. time until next bus

Beta
𝑋~Beta(𝑎, 𝑏)

pdf 𝑥 ∝ 𝑥𝑎−1 1 − 𝑥 𝑏−1

𝑥 ∈ (0,1)
Arises in Bayesian inference

§1.2

Exercise 1.3.1 (Coin tosses)
Suppose we take a biased coin, and tossed it 𝑛 = 10 times,
and observe 𝑥 = 6 heads. Let’s use the probability model

𝑋 ~ Binom(𝑛, 𝑝)

where 𝑝 is the probability of heads. Estimate 𝑝.

Log likelihood of the observed data:

Parameter that maximizes it:

§1.3

Exercise 1.3.6 (Handling boundaries)
We throw a 𝑘-sided dice, and get the answer 𝑥=10.
Estimate 𝑘, using the probability model

ℙ throw 𝑥 =
1

𝑘
, 𝑥 ∈ {1, … , 𝑘}

INDICATOR FUNCTIONS

The indicator function 1𝐴 is simply

1𝐴 = ቊ
1 if statement 𝐴 is true
0 if statement 𝐴 is false

SANITY CHECK
Does our answer
depend on the
data? In the way
we’d expect it to?

§1.3

§1.3§1.3 Maximum likelihood estimation §1.3

Exercise 1.3.2 (Exponential sample)
Let the dataset be a list of real numbers, 𝑥1, … , 𝑥𝑛, all > 0.
Use the probability model that says they’re all independent
Exp(𝜆) random variables, where 𝜆 is unknown. Estimate 𝜆.

Log likelihood of the observed data:

Parameter that maximizes it:

CONTINUOUS RANDOM VARIABLES (real-valued)

Exponential pdf 𝑥 = 𝜆𝑒−𝜆𝑥

𝑋~Exp 𝜆 𝑥 > 0
np.random.exponential(scale=1/𝜆)

§1.3

Exercise 1.3.4 (Predictive models)
Consider a dataset of January temperatures, one record per year. Let 𝑡𝑖
be the year for record 𝑖 = 1, … , 𝑛, and let 𝑦𝑖 be the temperature. Using
the probability model

𝑌𝑖 ~ Normal 𝛼 + 𝛾𝑡𝑖 , 𝜎2

estimate 𝛾, the annual rate of temperature change.

§1.3

§1.3§1.3 Maximum likelihood estimation §1.3

Exercise 1.3.4 (Predictive models)
Consider a dataset of January temperatures, one record per year. Let 𝑡𝑖
be the year for record 𝑖 = 1, … , 𝑛, and let 𝑦𝑖 be the temperature. Using
the probability model

𝑌𝑖 ~ Normal 𝛼 + 𝛾𝑡𝑖 , 𝜎2

estimate 𝛾, the annual rate of temperature change.

What would happen if we just solved one equation, for the
parameter we’re interested in?

𝑑

𝑑𝛾
log lik = 0

We get the answer

ො𝛾 =
Σ𝑖𝑡𝑖(𝑦𝑖 − 𝛼)

Σ𝑖𝑡𝑖
2

SANITY CHECK
Does our answer
depend on
unknown
parameters?

§1.3

Three views of a probability model

rand.var
notation

code

likelihood

def rtemp(t, α,φ,c,γ,σ):
 pred = c + α * np.sin(2*π*(t+φ)) + γ*t
 return np.random.normal(loc=pred, scale=σ)

Temp𝑖 ~ 𝛼 sin 2𝜋 𝑡𝑖 + 𝜑 + 𝑐 + 𝛾𝑡𝑖 + Normal 0, 𝜎2 ,

𝑖 ∈ {1, … , 𝑛}

Exercise

The observed data is [temp1,…,tempn]. Find an expression for the log
likelihood.

Temp𝑖 ~ 𝛼 sin 2𝜋 𝑡𝑖 + 𝜑 + 𝑐 + 𝛾𝑡𝑖 + Normal 0, 𝜎2 ,

𝑖 ∈ {1, … , 𝑛}

Watch out for copy-paste-itis! We want the likelihood of seeing temp1,
for the random variable Temp1~𝑁(pred1, 𝜎2). Don’t just paste in the
formula from the random variable reference sheet,

1

2𝜋𝜎2
𝑒− 𝑥−𝜇 2/2𝜎2

There are standard numerical random variables that you should know:

DISCRETE RANDOM VARIABLES

Binomial
𝑋~Bin(𝑛, 𝑝)

ℙ 𝑋 = 𝑥 =
𝑛
𝑥

𝑝𝑥 1 − 𝑝 𝑛−𝑥

𝑥 ∈ {0,1, … , 𝑛}

For count data, e.g. number of heads in 𝑛 coin tosses

Poisson
𝑋~Pois(𝜆)

ℙ 𝑋 = 𝑥 =
𝜆𝑥𝑒−𝜆𝑥

𝑥!
𝑥 ∈ {0,1, … }

For count data, e.g. number of buses passing a spot

Categorical
𝑋~Cat(𝑝1, … , 𝑝𝑘)

ℙ 𝑋 = 𝑥 = 𝑝𝑥

𝑥 ∈ {1, … , 𝑘}
For picking one of a fixed number of choices

CONTINUOUS RANDOM VARIABLES

Uniform
𝑋~𝑈[𝑎, 𝑏]

pdf 𝑥 =
1

𝑏 − 𝑎
𝑥 ∈ [𝑎, 𝑏]

A uniformly-distributed floating point value

Normal / Gaussian
𝑋~𝑁(𝜇, 𝜎2)

pdf 𝑥 =
1

2𝜋𝜎2
𝑒− 𝑥−𝜇 2/2𝜎2

𝑥 ∈ ℝ

For data about magnitudes, e.g. temperature or height

Pareto
𝑋~Pareto(𝛼)

pdf 𝑥 = 𝛼 𝑥−(𝛼+1)

𝑥 ≥ 1
For data about “cascade” magnitudes, e.g. forest fires

Exponential
𝑋~Exp(λ)

pdf 𝑥 = 𝜆 𝑒−𝜆𝑥

𝑥 > 0
For waiting times, e.g. time until next bus

Beta
𝑋~Beta(𝑎, 𝑏)

pdf 𝑥 ∝ 𝑥𝑎−1 1 − 𝑥 𝑏−1

𝑥 ∈ (0,1)
Arises in Bayesian inference

§1.2

DISCRETE RANDOM VARIABLES

Binomial
𝑋~Bin(𝑛, 𝑝)

ℙ 𝑋 = 𝑥 =
𝑛
𝑥

𝑝𝑥 1 − 𝑝 𝑛−𝑥

𝑥 ∈ {0,1, … , 𝑛}

For count data, e.g. number of heads in 𝑛 coin tosses

Poisson
𝑋~Pois(𝜆)

ℙ 𝑋 = 𝑥 =
𝜆𝑥𝑒−𝜆𝑥

𝑥!
𝑥 ∈ {0,1, … }

For count data, e.g. number of buses passing a spot

Categorical
𝑋~Cat(𝑝1, … , 𝑝𝑘)

ℙ 𝑋 = 𝑥 = 𝑝𝑥

𝑥 ∈ {1, … , 𝑘}
For picking one of a fixed number of choices

CONTINUOUS RANDOM VARIABLES

Uniform
𝑋~𝑈[𝑎, 𝑏]

pdf 𝑥 =
1

𝑏 − 𝑎
𝑥 ∈ [𝑎, 𝑏]

A uniformly-distributed floating point value

Normal / Gaussian
𝑋~𝑁(𝜇, 𝜎2)

pdf 𝑥 =
1

2𝜋𝜎2
𝑒− 𝑥−𝜇 2/2𝜎2

𝑥 ∈ ℝ

For data about magnitudes, e.g. temperature or height

Pareto
𝑋~Pareto(𝛼)

pdf 𝑥 = 𝛼 𝑥−(𝛼+1)

𝑥 ≥ 1
For data about “cascade” magnitudes, e.g. forest fires

Exponential
𝑋~Exp(λ)

pdf 𝑥 = 𝜆 𝑒−𝜆𝑥

𝑥 > 0
For waiting times, e.g. time until next bus

Beta
𝑋~Beta(𝑎, 𝑏)

pdf 𝑥 ∝ 𝑥𝑎−1 1 − 𝑥 𝑏−1

𝑥 ∈ (0,1)
Arises in Bayesian inference

There are standard numerical random variables that you should know:

Useful properties of the Normal distribution:

▪ If we rescale a Normal, we get a Normal

▪ If we add independent Normals, we get a Normal

§1.2

§1.4 Numerical optimization §1.4

with numerical optimization

using maximum likelihood estimation

(since the likelihood function is usually far too
complex for exact optimization)

Numerical optimization with Python / scipy

To find the minimum of a smooth function 𝑓: ℝ𝐾 → ℝ,

1 import scipy.optimize
2

3 def f(x):
4 return …
5

6 x0 = […] # initial guess
7 ොx = scipy.optimize.fmin(f, x0)

†

† There is no scipy.optimize.fmax

The initial guess will influence which local
minimum the fmin ends up finding.

Exercise 1.4.2 (Constraints / softmax transformation)
Find the maximum of

𝑓 𝑝1, 𝑝2, 𝑝3 = 0.2 log 𝑝1 + 0.5 log 𝑝2 + 0.3 log 𝑝3

over 𝑝1, 𝑝2, 𝑝3 ∈ (0,1) such that 𝑝1 + 𝑝2 + 𝑝3 = 1.

1
2
3
4
5
6
7
8
9
10

def f(p):
 p1,p2,p3 = p
 return 0.2*np.log(p1) + 0.5*np.log(p2) + 0.3*np.log(p3)

def softmax(s):
 p = np.exp(s)
 return p / np.sum(p)

ŝ = scipy.optimize.fmin(lambda s: -f(softmax(s)), [0,0,0])
ŝ = softmax(ŝ)

Optimization terminated successfully. Current function value: 1.02965. Iterations: 63.
Function evaluations: 120
array([0.19999474, 0.49999912, 0.30000614])

Exercise 1.4.1 (Positivity constraint)
Find the maximum over 𝜎 > 0 of

𝑓 𝜎 =
1

2𝜋𝜎2
𝑒−3/2𝜎2

How does it work?
Animations by Lili Jiang, Towards Data Science

GRADIENT DESCENT
Find the gradient of the
function, and take a step in the
direction of steepest descent

https://towardsdatascience.com/a-visual-explanation-of-gradient-descent-methods-momentum-adagrad-rmsprop-adam-f898b102325c

Visualizing the Loss
Landscape of Neural
Nets

Li, Xu, Taylor, Studer,
Goldstein (2018)

https://arxiv.org/abs/
1712.09913

Software 1.0 is code we write. Software 2.0 is code written by the

optimization based on an evaluation criterion (such as “classify this

training data correctly”). It is likely that any setting where the

program is not obvious but one can repeatedly evaluate the

performance of it (e.g. — did you classify some images correctly? do

you win games of Go?) will be subject to this transition, because the

optimization can find much better code than what a human can

write.

	Slide 1: §1.3 Maximum likelihood estimation
	Slide 2
	Slide 3: There are standard numerical random variables that you should know:
	Slide 4
	Slide 5
	Slide 7: §1.3 Maximum likelihood estimation
	Slide 8
	Slide 9
	Slide 10: §1.3 Maximum likelihood estimation
	Slide 11
	Slide 12: Three views of a probability model
	Slide 13
	Slide 14: There are standard numerical random variables that you should know:
	Slide 15
	Slide 16: §1.4 Numerical optimization
	Slide 17
	Slide 18
	Slide 19
	Slide 20: How does it work?
	Slide 21
	Slide 22

