
Example sheet 4
Random processes

Data Science—DJW—2023/2024

Questions labelled * are more challenging (but should still be attempted!). For some questions you can
test your answers using the online tester; there is a notebook with templates for answers and instructions
for submission on the course materials webpage. Following this example sheet is a page with hints for
each question.

Question 1. Draw the state space diagram for this Markov chain.

1 def rw(MAX_STATE=9):
2 x = 0
3 while True:
4 yield x
5 d = numpy.random.choice([−1,0,1], p=[1/4,1/2,1/4])
6 x = min(MAX_STATE, max(0, x + d))

Question 2. We’re given a sequence [x0, x1, . . . , xn], and we decide to model it as the Markov chain

Xi = µ+ λ(Xi−1 − µ) +N(0, σ2).

(When |λ| < 1 this tends to fluctuate around µ, as illustrated in lecture notes example 11.1.6, so it’s
known as a “mean-reverting random walk”.) Explain how to estimate λ, µ, and σ. [Optional: To test
your code using the online tester, fill in the answer template for fit_mrrw.]

Question 3*. Consider a dataset of average November temperatures in Cambridge. Let Tempi be the
temperature for record i in the dataset, i = 1, . . . , n, and let ti be the year. Assume the records are
sorted in increasing order of year, and that there are no gaps. Consider two models for this dataset: the
rich model

Tempi = α+ γ(ti − 2000) + λTempi−1 +N(0, σ2)

and the simpler model
Tempi = α+ γ(ti − 2000) +N(0, σ2)

(a) Explain how to fit both models.
(b) Explain how to test the hypothesis that the simpler model is adequate.
[Optional: To test your code using the online tester, fill in the answer templates for fit_climat0,
fit_climate1, and test_climate0.]

Question 4. For the Cambridge weather simulator, example 11.1.1 in lecture notes, show that

P(X3 = r |X0 = g) =
∑
x1,x2

Pgx1
Px1x2

Px2r.

Question 5*. Consider this code for generating random variables X → Y → Z:

x = np.random.uniform()
y = np.random.binomial(n=1, p=x)
z = np.random.normal(loc=y, scale=ε)

Show that
PrY (1 | X = x, Z = z) =

x

x+ (1− x)e(1−2z)/2ε2
.

How does PrY (1 |X = x, Z = z) depend on x and z when ε ≈ 0? What if ε is very large?

Question 6. Consider a random walk on the vertices of the undirected graph below, as follows: each
timestep we take one of the edges chosen at random, each edge from our current vertex equally likely.
Find the stationary distribution.

1

https://www.cl.cam.ac.uk/teaching/current/DataSci/materials.html

0 1

2

3

[Optional: To test your code using the online tester, fill in the answer template for graphrw_stationary.]

Question 7*. Let X0, X1, X2, . . . be a mean-reverting random walk, i.e. a Markov chain

Xi = µ+ λ(Xi−1 − µ) +N(0, σ2) where − 1 < λ < 1.

The stationary distribution for this process is a Normal distribution. Find its parameters.

Question 8. Consider a moving object with noisy location readings. Let Xn be the location at timestep
n ≥ 0, and Yn the reading. Here’s the simulator.

1 def hmm():
2 MAX_STATE = 9
3 x = numpy.random.randint(low=0, high=MAX_STATE+1) # initial location X0

4 while True:
5 e = numpy.random.choice([−1,0,1])
6 y = min(MAX_STATE, max(0, x + e)) # noisy reading of location
7 yield y
8 d = numpy.random.choice([−1,0,1], p=[1/4,1/2,1/4])
9 x = min(MAX_STATE, max(0, x + d)) # new location at next timestep

We’d like to infer the location Xn, given readings y0, . . . , yn.
(a) Give justifications for the following three equations, which give an inductive solution. First the

base case,

Pr(x0 | y0) = const× Pr(x0)Pr(y0 | x0),

and next two equations for the induction step,

Pr(xn | h) =
∑
xn−1

Pr(xn−1 | h)Pr(xn | xn−1)

Pr(xn | h, yn) = const× Pr(xn | h)Pr(yn | xn).

In these two equations, h stands for (y0, . . . , yn−1), and we’ll assume we’ve already found Pr(xn−1|h).
(b) Give pseudocode for a function that takes as input a list of readings [y0, . . . , yn] and outputs a

probability vector for the posterior distribution of Xn, in other words it returns [π0, . . . , πMAX_STATE]
where

πx = P(Xn = x | y0, . . . , yn).

(c) If your code is given the input [3, 3, 4, 9], it should fail with a divide-by-zero error. Give an inter-
pretation of this failure.

[Optional: To test your code using the online tester, fill in the answer template for hmm_predict.]

Question 9. The code from question 8 can fail with a divide-by-zero error. This is undesirable in
production code! One way to fix the problem is to modify the Markov model to include a ‘random
teleport’—to express the idea ‘OK, our inference has gone wrong somewhere; let’s allow our location
estimate to reset itself’. We can achieve this mathematically with the following model: with probability 1−
ε generate the next state as per line 9, otherwise pick the next state uniformly from {0, 1, . . . , MAX_STATE}.
Modify your code from question (b) to reflect this new model, with ε = 0.01.

Alternatively, we could fix the problem by changing the model to express ‘OK, this reading is glitchy;
let’s allow the code to discard an impossible reading’. How might you change the Markov model to achieve
this?

2

Hints and comments
Question 1. First identify the state space, i.e. the set of possible values for x. Looking at the code,
we see that x can only ever be an integer in {0, 1, . . . , 9}, so this is the state space. Next, draw arrows
to indicate transitions between states. Make sure that at every node you draw, the probabilities on all
outgoing edges sum up to one. You don’t need to draw every state in your state space diagram: just
show a typical state, and also the edge cases.

Question 2. Follow the same pattern as example 12.1.1. You should conclude that you need to solve a
least-squares optimization for the model

xi ≈ µ+ λ(xi−1 − µ), 1 ≤ i ≤ n.

This isn’t a proper linear model, because proper linear models have to be “sum of unknown coefficient
times feature vector”. Rewrite it with different parameters (as we did in section 2.2.4 for a different
model, and as you had to do for example sheet 1 question 7) i.e. in the form β0+β1e1 for a feature vector
e1 that you should identify, use sklearn to compute β̂0 and β̂1, and translate back to get λ̂ and µ̂.

Question 3. Fitting the rich model is much like question 2. Fitting the simpler model is a classic
supervised regression task, of the sort we’ve done many times already. Be careful about the vector sizes!
For the rich model, we can only use responses Temp2, . . . , Tempn. For the simpler model, we can use the
all n records.

For the hypothesis test: call the rich model H1, and think of the simpler model (call it H0) as a
restriction on the parameters of H1, namely the restriction that λ = 0. What test statistic do you think
would be useful here? Look back at example sheet 3 question 5.

Question 4. There’s a brute force solution, very similar to example 11.2.1 from lecture notes: first
use the law of total probability to condition on X1 AND X2, giving us an expression that includes
P(X2 = x2, X1 = x1 | X0 = g), and then break this expression down further using the definition of
conditional probability with baggage {X0 = g}.

There’s also a more elegant solution based on a more sophisticated use of memorylessness, which says
in its most general form that “conditional on the present, the past and the future are independent”. This
includes the sort of equation stated at the top of section 11.2 of lecture notes,

P(X3 = x3 |X2 = x2, X1 = x1, X0 = x0) = P(X3 = x3 |X2 = x2),

but it also includes situations where there are gaps in the future e.g.

P(X3 = x3 |X1 = x1, X0 = x0) = P(X3 = x3 |X1 = x1) (present is x1)

and situations where there are gaps in the past, e.g.

P(X3 = x3 |X2 = x2, X0 = x0) = P(X3 = x3 |X2 = x2) (present is x2).

Can you use the gaps-in-the-past version to answer this question? Can you prove the gaps-in-the-past
and the gaps-in-the-future versions of memorylessness?

Question 5. This is very similar to an example from lecture 15, in which we calculated

P
(
X1 = drizzle | X0 = rain, X2 = rain

)
.

Just use likelihood notation (Pr) instead of probability (P), to accommodate the fact that X and Z are
continuous random variables. (All the standard laws of probability still hold when we’re working with
Pr; see lecture notes section 11.2 for a little more discussion.)

The last part of the question is asking you to take limits as ε → 0 and as ε → ∞. As a sanity check,
try to give an intuitive explanation of your answer, in terms of how you’d predict Y in the case where
(a) Z is almost noiseless and (b) Z is very noisy.

Question 6. First write out the transition probability: Pxy = 0 if there’s no x ↔ y edge, and Pxy = 1/nx

otherwise, where nx is the number of edges incident at vertex x. In indicator notation, Pxy = 1x↔y/nx.

3

In general it’s a good idea to try to solve the detailed balance equations first, and only if that fails
is it worth trying to solve the full stationarity equations. In this case the detailed balance equations do
indeed work.

Can you find the solution for a general connected undirected graph?

Question 7. The state space is R which is not countable, so all the sum-based equations from lectures
don’t work. We have to go right back to the definition of stationarity: a distribution π is a stationary
distribution if

X0 ∼ π =⇒ X1 ∼ π.

Review the calculations in section 11.4 where we derived π = πP for discrete state-space Markov chains,
and think: can I use similar reasoning to derive the parameters of the Normal distribution that the
question tells us is stationary?

Question 8. This is a hidden Markov model, as mentioned in section 12.3:

X0 X1 X2 · · ·

Y0 Y1 Y2

Part (a). The second equation requires the law of total probability (with baggage), and the third equation
requires Bayes’s rule (with baggage h). ‘With baggage’ is described in section 11.2. The idea of these
manipulations is to put the probability expressions into a form where you can leverage memorylessness:
“Xn is generated based only on Xn−1, and Yn is generated based only on Xn”.

Part (b). Let π(n) be the probability vector at timestep n. Compute π(0) from the first equation. Then,
iteratively apply the next two equations, to compute π(n) from π(n−1). Your implementation should use
two matrices, Pij = P(Xn = j | Xn−1 = i) and Qxy = P(Yn = y | Xn = x). The first is the transition
matrix that we’re used to from Markov Chains, and the second is called the emission matrix.

4

