
Example sheet 3
Frequentist inference

Data Science—DJW—2023/2024

Before attempting this example sheet, it is a good idea to work through the exercises in lecture notes
sections 9.2 (confidence intervals), 9.3 (hypothesis testing), and 9.6 (non-parametric resampling).

Questions labelled * are more challenging. For some questions you can test your answers using
the online tester; there is a notebook with templates for answers and instructions for submission
on the course materials webpage.

Following this example sheet is a page with hints for each question. There is also a set of more
advanced supplementary questions. These are not intended for supervision (unless your supervisor
directs you otherwise).

Question 1. Sketch the cumulative distribution function, and calculate the density function, for
this random variable:
def rx():

u1 = random.random()
u2 = random.random()
return min(u1,u2)

Question 2*. The dataset at https://www.cl.cam.ac.uk/teaching/current/DataSci/data/
responsetime_ms.txt is a list of web server response times, measured in milliseconds.
(a) Plot the empirical cumulative distribution function (ecdf) of this sample.
(b) Plot the empirical tail distribution function (etdf = 1− ecdf), on a log-log plot.
(c) You should see that, for large enough response times, the etdf looks roughly like a (noisy)

straight line on a log-log plot. Using this observation, estimate the 99.9%ile and 99.99%ile
of response time.

Question 3. We are given a dataset x = [x1, . . . , xn] which we believe is drawn from Normal(µ, σ2)
where µ and σ are unknown.
(a) Find the maximum likelihood estimators µ̂ and σ̂.
(b) Find a 95% confidence interval for σ̂, using parametric resampling.

https://www.cl.cam.ac.uk/teaching/current/DataSci/materials.html
https://www.cl.cam.ac.uk/teaching/current/DataSci/data/responsetime_ms.txt
https://www.cl.cam.ac.uk/teaching/current/DataSci/data/responsetime_ms.txt


(c) Repeat, but using non-parametric resampling.
[Optional: To test your code using the online tester, fill in the answer template for sd_confint_parametric
and sd_confint_nonparametric.]

Question 4. We are given data x = [x1, . . . , xm] which we believe is sampled from Exp(µ), and
further data y = [y1, . . . , yn] which we believe is sampled from Exp(ν). We wish to test the
hypothesis that µ = ν.
(a) Under this hypothesis, all the datapoints in x and y are sampled from a commmon distri-

bution Exp(λ), where λ is the common value of µ and ν. Find the maximum likelihood
estimator λ̂.

(b) Explain how to compute the p-value for this test, using the test statistic ν̂−µ̂, with parametric
resampling.

[Optional: To test your code using the online tester, fill in the answer template for exp_equality_test.]

Question 5. We are given a dataset of (gi, xi, yi) records, i = 1, . . . , n, where gi ∈ {1, 2, 3} is the
group that record i belongs to, xi ∈ R is a predictor variable, and yi ∈ R is the response. We are
interested in the model

Yi ∼ αgi + βgixi +N(0, σ2).

(a) Explain how to fit this model to the dataset.
(b) We wish to test the hypothesis that β1 = β2 = β3. Suggest a test statistic, and describe how

to conduct the test.

Question 6*. (a) I toss a coin n times and get x heads. My model is that the number of heads
is Bin(n, θ) and I wish to test the null hypothesis that θ = 1/2. Explain how to find the
p-value for this test.

(b) I make many attempts at a task, and I have no successes at all, just a string of failures.
Modelling my attempts as independent random variables with success probability θ and
failure probability 1 − θ, how many failures does it take for me to reject θ = 1/2 at p-value
5%?

Question 7. We have a climate dataset of (t, temp) pairs. Considered a model in which temper-
atures increase linearly,

temp ∼ α+ β1 sin(2πt) + β2 cos(2πt) + γ(t− 2000) +Normal(0, σ2).

Let γ̂ be the maximum likelihood estimator for the rate of temperature increase. Explain how to
find a 95% confidence interval for γ̂.

Question 8. I have computed the maximum likelihood estimators for all the parameters in the
model in question 7, and I have used them to define a temperature prediction function

def pred(tnew): return α̂ + β̂1 sin(2πtnew) + β̂2 cos(2πtnew) + γ̂(tnew‐2000)

Modify this code so that in addition to predicting the temperature it also produces a 95% confidence
interval for its prediction.

Question 9. The number of unsolved murders in Kembleford over three successive years was 3,
1, 5. The police chief was then replaced, and the numbers over the following two years were 2,
3. We know from general policing knowledge that the number of unsolved murders in a given
year follows the Poisson distribution. Model the numbers as Poisson(µ) under the old chief and
Poisson(ν) under the new chief.
(a) Explain how to compute a 95% confidence interval for ν̂ − µ̂, using parametric sampling.
(b) Explain how to test the hypothesis that µ = ν, using parametric sampling.
(c) Explain carefully the difference in sampling methods between parts (a) and (b).
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Hints and comments
Question 1. Work through exercise 5.3.4 in lecture notes, then apply the same strategy to this question.

Question 2. The code for plotting the ecdf is in lecture notes section 7.1.
When there isn’t enough data to get a reliable percentile from the dataset itself, in other words when the

ecdf is very noisy, it’s a good idea to sketch a continuous cdf that approximates the ecdf and read off percentiles
from our sketch. When we’re looking for extreme events, such as the 99.99%ile which has very low probability,
it’s a good idea to transform the y-axis of the ecdf plot to give more resolution at extreme events, by plotting
log(1− cdf(x)). To get the 99.9%ile, we simply want

cdf(x) = 0.999 ⇒ log10(1− cdf(x)) = −3.

For a more thoughtful answer, you might think about how much noise there is in your etdf plot. How might
you use non-parameteric resampling to get a sense of this?

Question 3. For part (a) you should learn these formulae by heart, and be able to derive them without thinking:
µ̂ is the sample mean x̄, and σ̂ is

√
n−1

∑
i(xi − x̄)2. For part (b), use the general method of example 9.2.1 from

lecture notes, but remember this question is asking you for a confidence interval for σ̂ not for µ̂. For part (c),
see example 9.6.1.

Question 4. Check the definition of the Exponential distribution in lecture notes section 1.2, and watch out for
difference in convention between maths (which refers to the rate parameter µ) and numpy (which refers to the
scale parameter 1/µ). You should find the mles to be µ̂ = 1/x̄, ν̂ = 1/ȳ, λ̂ = 1/z̄ where z is the concatenation
of x and y. For the test, look at exercise 9.3.1 in lecture notes.

Question 5. In questions where you’re given a parametric model, and asked to test a hypothesis that restricts
the parameters, and it’s left to you to choose a test statistic, it’s a good strategy to (i) find the maximum likeli-
hood estimators under the general model, (ii) invent some plausible-looking function based on those maximum
likelihood estimators. Ask yourself how your statistic would differ between the scenario where H0 is true, and
the scenario where H0 isn’t true. This will tell you what “more extreme” means, in the definition of p-value,
and hence whether to use a one-sided or two-sided test. Look at exercise 9.3.2 for inspiration.

This question tells us a general hypothesis H1, namely that Y ∼ αg +βgx+N(0, σ2); and it proposes a null
hypothesis H0 that is a restriction on the parameters of H1, namely that β0 = β1 = β2. Can you think up a
test statistic using the β̂g parameters from H1 and β̂ from H0?

Question 6. For part (a), we only have a single datapoint namely the number of heads x, so we might as well
use x itself as the test statistic. For this question, we can do much better than just giving pseudocode: we know
the distribution that this test statistic will have under H0, so we can write out the p-value exactly in terms of
the cdf of the Binomial distribution.

For part (b), just use your expression for the p-value from part (a), applied to data x = 0. Your expression
will depend on n. Find the smallest n such that p ≤ 0.05.

Question 7. Follow the general strategy from section 8.2 of lecture notes. In your answers for this question, it’s
a good idea to use sklearn wherever reasonable—there’s no point going through lots of algebra, when there are
fast easy routines that you can use. You can generate a synthetic dataset with np.random.normal(loc=pred,
scale=σ̂), as in exercise 8.2.4 lines 14–15, and you can compute the predicted temperatures pred as in sec-
tion 2.1 line 13.

Question 8. We want to generate a multiverse of synthetic datasets, and canvas the opinion of data scientists
across this multiverse. If a parallel-universe data scientist sees dataset X∗, what value would they produce for
pred(tnew=2050)? You just need to assemble a large collection of these predictions, then find a 95% confidence
interval in the usual way.

For an extra challenge, write your code so that it accepts a vector-valued tnew.

Question 9. The Poisson distribution is a common choice for counts of events, for example the number of
buses passing a bus-stop over a given time period, or the number of radioactive particles emitted by a source,
or the number of murders in a quiet English village.

For part (a), follow example 9.2.3 from lecture notes. For the maximum likelihood calculation, see your
answers to Example Sheet 1. For part (b), follow example 9.3.1 (though you need to think about what test
statistic to use; a sensible choice is ν̂ − µ̂).
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Supplementary questions
These questions are not intended for supervision (unless your supervisor directs you otherwise).
Some require careful maths, some are best answered with coding, some are philosophical.

Question 10. Sketch the cumulative distribution function, and calculate the density function,
for this random variable:
def rx():

u = random.random()
return u * (1−u)

Question 11. A point lightsource at coordinates (0, 1) sends out a ray of light at an angle Θ
chosen uniformly in (−π/2, π/2). Let X be the point where the ray intersects the horizontal line
through the origin. What is the density of X?

Note: This random variable is known as the Cauchy distribution. It is unusual in that it has
no mean.

X
Θ

Question 12. We are given a dataset x1, . . . , xn which we believe is drawn from Uniform[0, θ]
where θ is unknown. Recall from Example Sheet 1 that the maximum likelihood estimator is
θ̂ = maxi xi. Find a 95% confidence interval for θ̂, both using parametric resampling and using
non-parametric resampling.

Question 13. I implement the two resamplers from question 12. To test them, I generate 1000
values from Uniform[0, θ] with θ = 2, and find a 95% confidence interval for θ̂. I repeat this 20
times. Not once does my confidence interval include the true value, θ = 2, for either resampler.
Explain.

Naive resampling (based on mle parameter estimates or on empirical distributions) is an heuristic,
not a perfect procedure. It works well for ‘central’ statistics like averages or sums. It doesn’t work
well for certain types of extreme statistics (like the maximum of a dataset) nor for certain types of
distribution (like the uniform).

The idea of resampling is that we want to simulate novel unseen versions of the dataset. The best
way to do this is to use a model that we think is a good description for novel unseen data—in other
words, to use a model that fits a holdout dataset well. (See section 9 of lecture notes for a longer
discussion of generalization. That section of notes is non-examinable.) One ad hoc way to get better
generalization in this case is to use an unbiased estimator for θ rather than a maximum likelihood
estimator; though this is happenstance, not a general principle!

Question 14. Test the hypothesis that temperatures in Cambridge have not been changing, using
a non-parametric test.

In lectures we looked at several examples of tests using parametric resampling. We also looked at one
example of a test with non-parametric resampling, namely Fisher’s permutation test. Example 8.6.2
in lecture notes gives another illustration of non-parametric sampling for hypothesis tests.

For this dataset, it’s blindingly obvious that there is an annual cycle in temperatures, so your
resampling strategy must respect this. If there were no global warming, and you wanted to simulate a
January, how could you simulate it using the data in this dataset?

Second, the test statistic. You are at liberty to use any test statistic at all; it doesn’t have to be
linked to the resampling strategy. You might as well use γ̂ from question 7.

Question 15. We have a dataset x1, x2, . . . , xn, and we wish to model it as Normal(µ, σ2) where
µ and σ are unknown. How different are Bayesianist and frequentist confidence intervals for the
mean? To be concrete, let’s work with the first 10 values for temp in the climate dataset.



(a) Plot the log likelihood function logPr(x1, . . . , xn|µ, σ) as a function of µ and σ. (A code
skeleton is provided in https://github.com/damonjw/datasci/blob/master/ex/ex3.
ipynb.)

(b) Using frequentist resampling, generate 50 resampled datasets, find the maximum likelihood
estimators µ̂ and σ̂ for each, and show these 50 points on your plot.

(c) Using computational Bayesian methods, with priors µ ∼ Normal(0, 102) and σ ∼ Γ(k =
2, θ = 1) (where k and θ are as in the numpy documentation), sample 500 pairs from the
prior distribution and show them on your plot. Then compute the posterior weights of these
sampled pairs, and show the weighted pairs on your plot by setting the size of the plot marker
in proportion to weight.

(d) Find the 95% confidence interval (for µ̂ in the frequentist case, and for (µ | data) in the
Bayesianist case), and show them on your plot.

(e) Repeat the exercise, using the first 100 values from the climate dataset.

You should see broadly similar outcomes, whether you’re plotting frequentist samples of (µ̂, σ̂) or
whether you’re plotting the Bayesianist samples that get non-negligible weight. When there are more
datapoints, then the results are even more similar: there’s a very narrow peak in the log likelihood plot,
and the samples from both Bayesianist and frequentist approaches are heavily concentrated arount this
peak. (Though the naive computational Bayesian procedure we learnt in this course doesn’t work very
well when the log likelihood has such a sharp spike.)

Question 16. In hypothesis testing, what p-value would you expect if H0 is true?

This is a mindbender! At first glance it’s surprising that this question even has an answer that applies
to any sort of hypothesis testing. And it’s tricky to even work out what it’s asking us to prove. Think
of it this way ...

In frequentist inference, we decide on a sampling distribution X∗ that tells us what the dataset
might have been if H0 were true. We then compute the p-value by an operation on t(x) and on the
histogram of t(X∗).

Now, if H0 were true, then the actual dataset x will look like a sample from X∗. If we perform
the p-value operation not on the actual value t(x) but on a typical value t(X∗), what’s the distribution
we’ll get for the p-value?

You can find the answer at https://en.wikipedia.org/wiki/Fisher's_method. The page
also describes how the answer can be used to combine the results of several independent tests.

Question 17. We are given a dataset x1, . . . , xn. Our null hypothesis is that these values are
drawn from Normal(0, σ2), where σ is an unknown parameter. Let

F̂ (x) =
1

n

n∑
i=1

1[xi/σ̂ ≤ x]

where σ̂ =
√

n−1
∑

i x
2
i is the maximum likelihood estimator for σ. If the null hypothesis is

true, we’d expect F̂ (x) to be reasonably close to Φ(x), the cumulative distribution function for
Normal(0, 1), for all x. Suggest how to test the hypothesis that the dataset is indeed drawn from
Normal(0, σ2), using a test statistic based on F̂ and Φ.

This question is asing you to be creative in inventing a test statistic. If you don’t feel creative, look
up the Kolmogorov-Smirnov test on Wikipedia.

When we fit a linear model, there’s an assumption that the residuals are normally distributed (as
discussed in section 2.4). After fitting a linear model, it’s always worth testing whether the residuals
are indeed normally distributed, and this question gives you a way to do this test.

Question 18 (Cardinality estimation).
(a) Let T be the maximum of m independent Uniform[0, 1] random variables. Show that P(T ≤

t) = tm. Find the density function PrT (t). Hint. For two independent random variables U
and V ,

P
(
max(U, V ) ≤ x

)
= P(U ≤ x and V ≤ x) = P(U ≤ x)P(V ≤ x).
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(b) A common task in data processing is counting the number of unique items in a collection.
When the collection is too large to hold in memory, we may wish to use fast approximation
methods, such as the following: Given a collection of items a1, a2, . . . , compute the hash of
each item x1 = h(a1), x2 = h(a2), . . . , then compute t = maxi xi.
If the hash function is well designed, then each xi can be treated as if it were sampled from
Uniform[0, 1], and unequal items will yield independent samples..
The more unique items there are, the larger we expect t to be. Given an observed value t,
find the maximum likelihood estimator for the number of unique items. [Hint. This is about
finding the mle from a single observation, as in lecture notes example 1.3.1.]

http://blog.notdot.net/2012/09/Dam‐Cool‐Algorithms‐Cardinality‐Estimation

Question 19. A recent paper Historical language records reveal a surge of cognitive distortions in
recent decades by Bollen et al., https://www.pnas.org/content/118/30/e2102061118.full,
claims that depression-linked turns of phrase have become more prevalent in recent decades. This
paper reports both confidence intervals and null hypotheses. Explain how it is computes them, in
particular (1) the readout statistic, (2) the sampling method.

Skim-read the whole paper, and read the Materials and Methods section closely. Note that the word
‘bootstrapping’ is another name for ‘non-parametric resampling’. You can find a definition of z-score
on Wikipedia, but it doesn’t add anything to the explanation given in the paper.

In the notation used in this course, the dataset used in the paper is (x1, y1), . . . , (xk, yk) where yk
is a vector

yi =
[
yi,1855, . . . , yi,2020

]
giving the prevalence of n-gram i in each year, and xi ∈ {1, 2, 3, 4, 5} is the number of words in that
n-gram.

The readout statistic t(x1, . . . , xk) is well hidden, and you will have to dig through the whole paper
to find it.

Question 20. To allow for non-linear temperature increase, Example Sheet 1 suggested a model
with a step function,

temp ∼ β1 sin(2πt) + β2 cos(2πt) + γdecade +Normal(0, σ2).

Find a 95% confidence interval for γ̂2010s − γ̂1980s. Conduct a hypothesis test of whether γ1980s =
γ2010s.

Question 21. I toss a coin n times and get the answers x1, . . . , xn. My model is that each toss
is Xi ∼ Bin(1, θ), and I wish to test the null hypothesis that θ ≥ 1/2.
(a) Find an expression for Pr(x1, . . . , xn ; θ). Give your expression as a function of y =

∑
i xi.

(b) Sketch logPr(x1, . . . , xn ; θ) as a function of θ, for two cases: y < n/2, and y > n/2.
(c) Assuming H0 is true, what is the maximum likelihood estimator for θ?
(d) Let the test statistic be y. What is the distribution of this test statistic, when θ is equal to

your value from part (c)?
(e) Explain why a one-sided hypothesis test is appropriate. Give an expression for the p-value

of the test.
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