
1

2 Sorting

Given two functions 𝑓 and 𝑔, both ℕ → ℝ, we say 𝑓(𝑛) is 𝑂(𝑔(𝑛)) if

∃𝜅 > 0 and 𝑛0 ∈ ℕ such that ∀𝑛 ≥ 𝑛0, |𝑓(𝑛)| ≤ 𝜅|𝑔(𝑛)|

and we say 𝑓(𝑛) is Ω(𝑔(𝑛)) if

∃𝛿 > 0 and 𝑛0 ∈ ℕ such that ∀𝑛 ≥ 𝑛0, |𝑓(𝑛)| ≥ 𝛿|𝑔(𝑛)|.

If 𝑓(𝑛) is 𝑂(𝑔(𝑛)) and also Ω(𝑔(𝑛)) we say that 𝑓(𝑛) is Θ(𝑔(𝑛)).

def insertsort(x):

 for i in 1..(len(x)-1):

 # assert x[0:i] is sorted

 j = i – 1

 while j >= 0 and x[j] > x[j+1]:

 swap x[j] with x[j+1]

 j = j – 1

 # assert x[0:i+1] is sorted

Same thing, more succinctly
def insertsort(x):

 for i in 1..(len(x)-1):

do a linear search for where x[i] should go, and insert it

there

def binaryinsertsort(x):

 for i in 1..(len(x)-1):

do a binary search for where x[i] should go, and insert it

there

def selectsort(x):

 # This code fills in from the left,

 # the picture shows filling in from the right
 for i in 0..(len(x)-2):

 # Find what belongs at x[i]

 j = arg min
𝑖≤𝑘<len(𝑥)

x[k]

 swap x[i] with x[j]

(Binary)InsertSort

SelectSort

2

def quicksort(x):

1. Pick the last item to be the pivot, 𝑝 = 𝑥[len(𝑥) − 1].

2. Partition the array, so that

it has the form

(items ≤ 𝑝) ∷ 𝑝 ∷ (items ≥ 𝑝)

3. The pivot 𝑝 is now in its correct place. Call quicksort on

the left portion, and on the right portion.

def partition(x, p):

 i = just before first item

 j = just before p

 while True:

 while i < j and x[i] <= p: i++

 while i < j and x[j-1] >= p: j--

 if i < j:

 swap x[i] with x[j-1]

 i++, j--

 swap p with x[j]

def bubblesort(x):

 while True:

 any_swaps = False

 for i in 0..(len(x)-2):

 if x[i] > x[i+1]:

 swap x[i] with x[i+1]

 any_swaps = True

 if not any_swaps:

 break

BubbleSort

QuickSort

3

def mergesort(src, dst):

 n = len(src)

 If n==1, just copy src[0] into dst[0]. Otherwise:

 m = int(n/2)

 x1 = new array of length m

 mergesort(src=src[0:m], dst=x1)

 x2 = new array of length n-m

 mergesort(src=src[m:n], dst=x2)

 merge x1 and x2 into dst

 free x1 and x2

def merge(x1, x2, dst):

 # assert len(dst) == len(x1)+len(x2)
 i1,i2 = 0,0

 for j in 0..(len(dst)-1):

 dst[j] = min(x1[i1], x2[i2])

 advance i1 or i2 appropriately

MergeSort

4

def heapsort(x):

 n = len(x)

 # Create the initial heap

 for i in 1..n-1:

 # assert x[0:i] is a heap

 add x[i] to heap and re-heapify

 # assert x[0:n] is a heap

 for i in n..1:

 # assert x[i:n] has largest n-i

 # assert x[0:i] is a heap
 swap x[0] with x[i-1]

 re-heapify x[0:i-1]

Re-heapify by bubbling up from i
j = i

while j > 0 and x[j] > x[parent(j)]:

 swap x[j] with x[parent(j)]

 j = parent(j)

Re-heapify by bubbling down from 0
j = 0

while x[j] < max(x[child1(j)], x[child2(j)]):

 swap x[j] with larger child

 j = larger child

Faster way to create the initial heap

for i in ⌊n/2⌋..0:

 # assert trees rooted at (i+1)..n are heaps

 re-heapify the tree rooted at x[i]

 by bubbling down

HeapSort

5

def radixsort(x):

 for each digit d, starting from

 the least significant:

 stably sort x by digit d

 # assert x is in order with

 # respect to digits d:end

def countingsort(x, m):

 # Count num.occurrences of each value
 counts = …

 # Figure out the first location for each possible value
 nextpos = …

 y = new array of same size as x

 # Go through x and place each item into its

 # correct location
 for each value v in x:

 y[nextpos[v]] = v

 nextpos[v] += 1

 return y

def bucketsort(x, a):

 B = ⌈len(x)/a⌉

 buckets = array of B empty linked lists

 for each item v in x:

 append v to bucket ⌊key(v) × B⌋

 # assert: average number of items in each bucket is ≈a
 for each bucket:

 sort it with a 𝑂(𝑛^2) algorithm

 output its values

BucketSort

6

3 Dynamic programming

We’re given an initial state 𝑥0, and we wish to choose a sequence of actions

[𝑎0, 𝑎1, …]. If we’re in state 𝑥 and we take action 𝑎, we gain reward 𝑟𝑥,𝑎 and

we move to next state 𝑛𝑥,𝑎 (unless 𝑥 is a terminal state, where no

further actions are possible, in which case we gain reward 𝑡𝑥).

What is the maximum possible total reward, starting from our

initial state 𝑥0?

Let 𝑣(𝑥) be the total reward that can be gained starting in state

𝑥. Then

𝑣(𝑥) = {
𝑡𝑥 if 𝑥 is terminal

max
𝑎∈𝐴

{𝑟𝑥,𝑎 + 𝑣(𝑛𝑥,𝑎)} otherwise

Is it worth doing cardio?

Suppose we have a fixed number of total lifetime heartbeats. Each day we can

choose to exercise or not. Let 𝑥 = (𝑟, 𝑏) be our current state, where 𝑟 is resting

heart rate and 𝑏 is the number of lifetime heartbeats remaining. If we exercise,

𝑟 ← 𝑟 − 𝜆(𝑟 − 50) and 𝑏 ← 𝑏 − 23 ⋅ 60 ⋅ 𝑟 − 60 ⋅ 155

and if we don’t exercise then

𝑟 ← 𝑟 + 𝜆(90 − 𝑟) and 𝑏 ← 𝑏 − 24 ⋅ 60 ⋅ 𝑟

Should we exercise, and if so how often?

7

Rod cutting.

A DIY supplier has a steel rod of length 𝑛 ∈ ℕ, and a machine that can cut it

into smaller pieces. Different lengths can be sold for different prices; a piece of

length ℓ ∈ ℕ fetches price 𝑝ℓ. How should it be cut, to maximize profit? (The

cut below, of a rod of length 10, fetches £8 + £9 + £8 = £25 and is sub-

optimal.)

length 1 2 3 4 5 6 7 8 9 10

price £1 £5 £8 £9 £10 £17 £17 £20 £24 £30

length 3 length 4 length 3

8

Matrix multiplication order.

The cost of multiplying two matrices depends on their dimensions: it takes

ℓ𝑚𝑛 operations to perform the multiplication

𝐴 ⋅ 𝐵 = 𝐶

ℓ × 𝑚 𝑚 × 𝑛 ℓ × 𝑛

If we want to compute the product of several matrices, we have a choice about

the order of multiplication (because matrix multiplication is associative). For

example, 𝐴𝐵𝐶𝐷𝐸 = (𝐴𝐵)((𝐶𝐷)𝐸) = 𝐴(𝐵((𝐶𝐷)𝐸)).

What is the least-cost way to compute 𝐴0𝐴1 ⋯ 𝐴𝑛−1 where 𝐴𝑖 has dimension

𝑑𝑖 × 𝑑𝑖+1?

9

Longest common subsequence.

A subsequence of a string 𝑠 is any string obtained by dropping zero or more

characters from 𝑠. Given two strings 𝑠 and 𝑡, what’s the longest subsequence

they have in common? (The illustration shows a common subsequence of

length 3, “HER”, but it’s not the longest common subsequence.)

T H E B A R B I E M O V I E

O P P E N H E I M E R

10

Resource allocation.

Several different university societies have all requested to book the sports hall,

request 𝑘 having start time 𝑢𝑘 ∈ ℝ and end time 𝑣𝑘 ∈ ℝ. The hall can only fit

one activity at a time. What is the maximum number of requests that can be

satisfied without overlap?

Alternative formulation: Let 𝑡0 < 𝑡1 < ⋯ < 𝑡𝑛 be a sequence of distinct

timepoints, and let request 𝑘 have start time 𝑡𝑈𝑘
 and end time 𝑡𝑉𝑘

 where

𝑈𝑘, 𝑉𝑘 ∈ ℕ.

