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2 Sorting 

Given two functions 𝑓 and 𝑔, both ℕ → ℝ, we say 𝑓(𝑛) is 𝑂(𝑔(𝑛)) if 

∃𝜅 > 0  and 𝑛0 ∈ ℕ  such that  ∀𝑛 ≥ 𝑛0, |𝑓(𝑛)| ≤ 𝜅|𝑔(𝑛)| 

and we say 𝑓(𝑛) is Ω(𝑔(𝑛)) if 

∃𝛿 > 0  and 𝑛0 ∈ ℕ  such that  ∀𝑛 ≥ 𝑛0, |𝑓(𝑛)| ≥ 𝛿|𝑔(𝑛)|. 

If 𝑓(𝑛) is 𝑂(𝑔(𝑛)) and also Ω(𝑔(𝑛)) we say that 𝑓(𝑛) is Θ(𝑔(𝑛)). 

 

 

def insertsort(x): 

  for i in 1..(len(x)-1): 

    # assert x[0:i] is sorted 

    j = i – 1 

    while j >= 0 and x[j] > x[j+1]: 

      swap x[j] with x[j+1] 

      j = j – 1 

    # assert x[0:i+1] is sorted 
 

# Same thing, more succinctly 
def insertsort(x): 

  for i in 1..(len(x)-1): 

do a linear search for where x[i] should go, and insert it 

there 

 

def binaryinsertsort(x): 

  for i in 1..(len(x)-1): 

do a binary search for where x[i] should go, and insert it 

there 

 

 

def selectsort(x): 

  # This code fills in from the left, 

  # the picture shows filling in from the right 
  for i in 0..(len(x)-2): 

    # Find what belongs at x[i] 

    j = arg min
𝑖≤𝑘<len(𝑥)

x[k] 

    swap x[i] with x[j] 

 

  

(Binary)InsertSort 

SelectSort 
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def quicksort(x): 

1. Pick the last item to be the pivot, 𝑝 = 𝑥[len(𝑥) − 1]. 

2. Partition the array, so that  

it has the form 

(items ≤ 𝑝) ∷ 𝑝 ∷ (items ≥ 𝑝) 

3. The pivot 𝑝 is now in its correct place. Call quicksort on 

the left portion, and on the right portion. 

 

def partition(x, p): 

  i = just before first item 

  j = just before p 

  while True: 

    while i < j and x[i] <= p: i++ 

    while i < j and x[j-1] >= p: j-- 

    if i < j: 

      swap x[i] with x[j-1] 

      i++, j-- 

  swap p with x[j] 

 

 
  

def bubblesort(x): 

  while True: 

    any_swaps = False 

    for i in 0..(len(x)-2): 

      if x[i] > x[i+1]: 

        swap x[i] with x[i+1] 

        any_swaps = True 

    if not any_swaps: 

      break 

BubbleSort 

QuickSort 
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def mergesort(src, dst): 

  n = len(src) 

  If n==1, just copy src[0] into dst[0]. Otherwise: 

  m = int(n/2) 

  x1 = new array of length m 

  mergesort(src=src[0:m], dst=x1) 

  x2 = new array of length n-m 

  mergesort(src=src[m:n], dst=x2) 

  merge x1 and x2 into dst 

  free x1 and x2 

 

def merge(x1, x2, dst): 

  # assert len(dst) == len(x1)+len(x2) 
  i1,i2 = 0,0 

  for j in 0..(len(dst)-1): 

    dst[j] = min(x1[i1], x2[i2]) 

    advance i1 or i2 appropriately 

 

  

MergeSort 
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def heapsort(x): 

  n = len(x) 

  # Create the initial heap 

  for i in 1..n-1: 

    # assert x[0:i] is a heap 

    add x[i] to heap and re-heapify 

  # assert x[0:n] is a heap 

  for i in n..1: 

    # assert x[i:n] has largest n-i 

    # assert x[0:i] is a heap 
    swap x[0] with x[i-1] 

    re-heapify x[0:i-1] 

 

# Re-heapify by bubbling up from i 
j = i 

while j > 0 and x[j] > x[parent(j)]: 

  swap x[j] with x[parent(j)] 

  j = parent(j) 

 

# Re-heapify by bubbling down from 0 
j = 0 

while x[j] < max(x[child1(j)], x[child2(j)]): 

  swap x[j] with larger child 

  j = larger child 

 

# Faster way to create the initial heap 

for i in ⌊n/2⌋..0: 

  # assert trees rooted at (i+1)..n are heaps 

  re-heapify the tree rooted at x[i] 

  by bubbling down 

 

  

HeapSort 
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def radixsort(x): 

  for each digit d, starting from 

  the least significant: 

    stably sort x by digit d 

    # assert x is in order with 

    # respect to digits d:end 

 

 

def countingsort(x, m): 

  # Count num.occurrences of each value 
  counts = … 

  # Figure out the first location for each possible value 
  nextpos = … 

  y = new array of same size as x 

  # Go through x and place each item into its  

  # correct location 
  for each value v in x: 

    y[nextpos[v]] = v 

    nextpos[v] += 1 

  return y 

 

 

def bucketsort(x, a): 

  B = ⌈len(x)/a⌉ 

  buckets = array of B empty linked lists 

  for each item v in x: 

    append v to bucket ⌊key(v) × B⌋ 

  # assert: average number of items in each bucket is ≈a 
  for each bucket: 

    sort it with a 𝑂(𝑛^2) algorithm 

    output its values 

 

  

BucketSort 
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3 Dynamic programming 

We’re given an initial state 𝑥0, and we wish to choose a sequence of actions 

[𝑎0, 𝑎1, … ]. If we’re in state 𝑥 and we take action 𝑎, we gain reward 𝑟𝑥,𝑎 and 

we move to next state 𝑛𝑥,𝑎 (unless 𝑥 is a terminal state, where no 

further actions are possible, in which case we gain reward 𝑡𝑥). 

What is the maximum possible total reward, starting from our 

initial state 𝑥0? 

 

Let 𝑣(𝑥) be the total reward that can be gained starting in state 

𝑥. Then 

𝑣(𝑥) = {
𝑡𝑥 if 𝑥 is terminal

max
𝑎∈𝐴

{𝑟𝑥,𝑎 + 𝑣(𝑛𝑥,𝑎)} otherwise  

 

 

 

 

Is it worth doing cardio? 

Suppose we have a fixed number of total lifetime heartbeats. Each day we can 

choose to exercise or not. Let 𝑥 = (𝑟, 𝑏) be our current state, where 𝑟 is resting 

heart rate and 𝑏 is the number of lifetime heartbeats remaining. If we exercise, 

𝑟 ← 𝑟 − 𝜆(𝑟 − 50)  and  𝑏 ← 𝑏 − 23 ⋅ 60 ⋅ 𝑟 − 60 ⋅ 155 

and if we don’t exercise then 

𝑟 ← 𝑟 + 𝜆(90 − 𝑟)  and  𝑏 ← 𝑏 − 24 ⋅ 60 ⋅ 𝑟 

Should we exercise, and if so how often? 
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Rod cutting. 

A DIY supplier has a steel rod of length 𝑛 ∈ ℕ, and a machine that can cut it 

into smaller pieces. Different lengths can be sold for different prices; a piece of 

length ℓ ∈ ℕ fetches price 𝑝ℓ. How should it be cut, to maximize profit? (The 

cut below, of a rod of length 10, fetches £8 + £9 + £8 = £25 and is sub-

optimal.) 

 

length 1 2 3 4 5 6 7 8 9 10 

price £1 £5 £8 £9 £10 £17 £17 £20 £24 £30 
 

 

 

  

length 3 length 4 length 3 
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Matrix multiplication order. 

The cost of multiplying two matrices depends on their dimensions: it takes 

ℓ𝑚𝑛 operations to perform the multiplication 

𝐴 ⋅ 𝐵 = 𝐶 

ℓ × 𝑚  𝑚 × 𝑛  ℓ × 𝑛 

 

If we want to compute the product of several matrices, we have a choice about 

the order of multiplication (because matrix multiplication is associative). For 

example, 𝐴𝐵𝐶𝐷𝐸 = (𝐴𝐵)((𝐶𝐷)𝐸) = 𝐴(𝐵((𝐶𝐷)𝐸)). 
 

What is the least-cost way to compute 𝐴0𝐴1 ⋯ 𝐴𝑛−1 where 𝐴𝑖 has dimension 

𝑑𝑖 × 𝑑𝑖+1? 
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Longest common subsequence. 

A subsequence of a string 𝑠 is any string obtained by dropping zero or more 

characters from 𝑠. Given two strings 𝑠 and 𝑡, what’s the longest subsequence 

they have in common? (The illustration shows a common subsequence of 

length 3, “HER”, but it’s not the longest common subsequence.) 

 

T H E B A R B I E M O V I E 
 

O P P E N H E I M E R    
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Resource allocation. 

Several different university societies have all requested to book the sports hall, 

request 𝑘 having start time 𝑢𝑘 ∈ ℝ and end time 𝑣𝑘 ∈ ℝ. The hall can only fit 

one activity at a time. What is the maximum number of requests that can be 

satisfied without overlap? 

Alternative formulation: Let 𝑡0 < 𝑡1 < ⋯ < 𝑡𝑛 be a sequence of distinct 

timepoints, and let request 𝑘 have start time 𝑡𝑈𝑘
 and end time 𝑡𝑉𝑘

 where 

𝑈𝑘, 𝑉𝑘 ∈ ℕ. 

 


