2 Sorting

Given two functions f and g, both $\mathbb{N} \rightarrow \mathbb{R}$, we say $f(n)$ is $O(g(n))$ if
$\exists \kappa>0$ and $n_{0} \in \mathbb{N}$ such that $\forall n \geq n_{0},|f(n)| \leq \kappa|g(n)|$
and we say $f(n)$ is $\Omega(g(n))$ if
$\exists \delta>0$ and $n_{0} \in \mathbb{N}$ such that $\forall n \geq n_{0},|f(n)| \geq \delta|g(n)|$.
If $f(n)$ is $O(g(n))$ and also $\Omega(g(n))$ we say that $f(n)$ is $\Theta(g(n))$.

```
def insertsort(x):
    for i in 1..(len(x)-1):
        # assert x[0:i] is sorted
        j = i - 1
        while j >= 0 and x[j] > x[j+1]:
        swap x[j] with x[j+1]
        j = j - 1
        # assert x[0:i+1] is sorted
```

\# Same thing, more succinctly
def insertsort(x):
for i in 1.. (len $(x)-1)$:
do a linear search for where $x[i]$ should go, and insert it
there
def binaryinsertsort(x):
for i in 1.. (len $(x)-1)$:
do a binary search for where $x[i]$ should go, and insert it
there

(Binary)InsertSort


```
def selectsort(x):
```

def selectsort(x):
\# This code fil7s in from the 7eft,
\# This code fil7s in from the 7eft,
\# the picture shows filiing in from the right
\# the picture shows filiing in from the right
for i in 0..(1en(x)-2):
for i in 0..(1en(x)-2):
\# Find what belongs at x[i]
\# Find what belongs at x[i]
j = \underset{i\leqk<len(x)}{\operatorname{arg}mik}}\textrm{m}[\textrm{k
j = \underset{i\leqk<len(x)}{\operatorname{arg}mik}}\textrm{m}[\textrm{k
swap x[i] with x[j]

```
        swap x[i] with x[j]
```

SelectSort . $1.11|||l| l|$

```
def quicksort(x):
```

 1. Pick the last item to be the pivot, \(p=x[\operatorname{len}(x)-1]\).
 2. Partition the array, so that
 it has the form
 (items \(\leq p):: p::(\) items \(\geq p)\)
 3. The pivot p is now in its correct place. Call quicksort on the left portion, and on the right portion.
def partition(x, p):
i = just before first item
j = just before p
while True:
while $i<j$ and $x[i]<=p: i++$
while $i<j$ and $x[j-1]>=p: j--$
if $i<j:$
swap $x[i]$ with $x[j-1]$
i++, j--
swap p with $\times[j]$

QuickSort


```
def bubblesort(x):
    while True:
        any_swaps = False
        for i in 0..(1en(x)-2):
            if x[i] > x[i+1]:
                swap x[i] with x[i+1]
                any_swaps = True
    if not any_swaps:
            break
```


BubbleSort


```
def mergesort(src, dst):
    n = 1en(src)
    If n==1, just copy src[0] into dst[0]. Otherwise:
    m = int(n/2)
    x
    mergesort(src=src[0:m], dst=\mp@subsup{x}{1}{})
    x2 = new array of length n-m
    mergesort(src=src[m:n], dst=x2)
    merge }\mp@subsup{\textrm{x}}{1}{}\mathrm{ and }\mp@subsup{\textrm{x}}{2}{}\mathrm{ into dst
    free }\mp@subsup{x}{1}{}\mathrm{ and }\mp@subsup{x}{2}{
def merge(x
    # assert 7en(dst) == 7en(x1)+7en(x2)
    i
    for j in 0..(len(dst)-1):
```



```
        advance i1 or iz appropriately
```

	HeapSort
```def heapsort(x): n = len(x) # Create the initial heap for i in 1..n-1: # assert x[0:i] is a heap add x[i] to heap and re-heapify # assert x[0:n] is a heap for i in n..1: # assert x[i:n] has 7argest n-i # assert x[0:i] is a heap swap x[0] with x[i-1] re-heapify x[0:i-1]```	
```# Re-heapify by bubb7ing up from i j = i while j > 0 and x[j] > x[parent(j)]: swap x[j] with x[parent(j)] j = parent(j) # Re-heapify by bubb7ing down from 0 j = 0 while x[j] < max(x[child1(j)], x[child2(j)]): swap x[j] with larger child j = larger child # Faster way to create the initial heap for i in [n/2]..0: # assert trees rooted at (i+1)..n are heaps re-heapify the tree rooted at x[i] by bubbling down```	

```
def radixsort(x):
    for each digit d, starting from
    the least significant:
        stably sort x by digit d
        # assert x is in order with
        # respect to digits d:end
```

```
def countingsort(x, m):
    # Count num.occurrences of each value
    counts = ...
    # Figure out the first 7ocation for each possib7e value
    nextpos = ...
    y = new array of same size as x
    # Go through x and place each item into its
    # correct location
    for each value v in x:
        y[nextpos[v]] = v
        nextpos[v] += 1
    return y
```

```
def bucketsort(x, a):
    B = \lceillen(x)/a\rceil
    buckets = array of B empty linked lists
    for each item v in x:
        append v to bucket [key(v) x B]
    # assert: average number of items in each bucket is \approxa
    for each bucket:
        sort it with a O(n^2) algorithm
        output its values
        BucketSort
```


3 Dynamic programming

We're given an initial state x_{0}, and we wish to choose a sequence of actions [$\left.a_{0}, a_{1}, \ldots\right]$. If we're in state x and we take action a, we gain reward $r_{x, a}$ and we move to next state $n_{x, a}$ (unless x is a terminal state, where no further actions are possible, in which case we gain reward t_{x}). What is the maximum possible total reward, starting from our initial state x_{0} ?

Let $v(x)$ be the total reward that can be gained starting in state
 x. Then

$$
v(x)=\left\{\begin{array}{cc}
t_{x} & \text { if } x \text { is terminal } \\
\max _{a \in A}\left\{r_{x, a}+v\left(n_{x, a}\right)\right\} & \text { otherwise }
\end{array}\right.
$$

Is it worth doing cardio?

Suppose we have a fixed number of total lifetime heartbeats. Each day we can choose to exercise or not. Let $x=(r, b)$ be our current state, where r is resting heart rate and b is the number of lifetime heartbeats remaining. If we exercise,

$$
r \leftarrow r-\lambda(r-50) \text { and } b \leftarrow b-23 \cdot 60 \cdot r-60 \cdot 155
$$

and if we don't exercise then

$$
r \leftarrow r+\lambda(90-r) \text { and } b \leftarrow b-24 \cdot 60 \cdot r
$$

Should we exercise, and if so how often?

Rod cutting.

A DIY supplier has a steel rod of length $n \in \mathbb{N}$, and a machine that can cut it into smaller pieces. Different lengths can be sold for different prices; a piece of length $\ell \in \mathbb{N}$ fetches price p_{ℓ}. How should it be cut, to maximize profit? (The cut below, of a rod of length 10 , fetches $£ 8+£ 9+£ 8=£ 25$ and is suboptimal.)

length	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$
price	$£ 1$	$£ 5$	$£ 8$	$£ 9$	$£ 10$	$£ 17$	$£ 17$	$£ 20$	$£ 24$	$£ 30$

Matrix multiplication order.

The cost of multiplying two matrices depends on their dimensions: it takes €mn operations to perform the multiplication

$$
\underset{\ell \times m}{A} \cdot \underset{m \times n}{B}=\underset{\ell \times n}{C}
$$

If we want to compute the product of several matrices, we have a choice about the order of multiplication (because matrix multiplication is associative). For example, $A B C D E=(A B)((C D) E)=A(B((C D) E))$.

What is the least-cost way to compute $A_{0} A_{1} \cdots A_{n-1}$ where A_{i} has dimension $d_{i} \times d_{i+1}$?

Longest common subsequence.

A subsequence of a string s is any string obtained by dropping zero or more characters from s. Given two strings s and t, what's the longest subsequence they have in common? (The illustration shows a common subsequence of length 3, "HER", but it's not the longest common subsequence.)

T	H	E	B	A	R	B	I	E	M	O	V	I	E

O	P	P	E	N	H	E	I	M	E	R

Resource allocation.

Several different university societies have all requested to book the sports hall, request k having start time $u_{k} \in \mathbb{R}$ and end time $v_{k} \in \mathbb{R}$. The hall can only fit one activity at a time. What is the maximum number of requests that can be satisfied without overlap?

Alternative formulation: Let $t_{0}<t_{1}<\cdots<t_{n}$ be a sequence of distinct timepoints, and let request k have start time $t_{U_{k}}$ and end time $t_{V_{k}}$ where $U_{k}, V_{k} \in \mathbb{N}$.

