
Examinable material

Sorting. Review of complexity and O-notation. Trivial sorting algorithms of
quadratic complexity. Review of merge sort and quicksort, understanding
their memory behaviour on statically allocated arrays. Heapsort. Stability.
Other sorting methods including sorting in linear time. Median and order
statistics.

Strategies for algorithm design. Dynamic programming, divide and
conquer, greedy algorithms and other useful paradigms.

Data structures. Elementary data structures: pointers, objects, stacks,
queues, lists, trees. Binary search trees. Red-black trees. B-trees. Hash
tables. Priority queues and heaps.

Course pages 2023 – 24

Algorithms 1

Course pages 2023 – 24

Algorithms 1

Graphs and path-finding algorithms. Graph representations.
Breadth-first and depth-first search. Single-source shortest
paths: Bellman-Ford and Dijkstra algorithms. All-pairs shortest
paths: dynamic programming and Johnson’s algorithms.

Graphs and subgraphs. Maximum flow: Ford-Fulkerson
method, Max-flow min-cut theorem. Matchings in bipartite
graphs. Minimum spanning tree: Kruskal and Prim algorithms.
Topological sort.

Advanced data structures. Binomial heap. Amortized analysis:
aggregate analysis, potential method. Fibonacci heaps. Disjoint
sets.

Course pages 2023 – 24

Algorithms 2

Be an algorithms chef, not an algorithms cook.
The exam questions will ask you to mix and match approaches and tricks you’ve learnt.

selectsort,
mergesort

bucket-based
sorting

quicksort & median

topo sort

Prim, Kruskal

Bellman-Ford,
dynamic programming

matchings hash table

binomial heap

DisjointSet

B-tree, red-black tree

Inhabit

Memorize

Grasp essence

dynamic
programming translation

lazy /
fastidious /
amortized

clever-greedy
divide-and-conquer Φ defn + thm + use

𝑂/Ω analysis

𝑂/Ω/Ω gap

proof by
induction

Records, pointers, etc.

heapsort

binary
heap

Dijkstra

BFS DFS

MaxFlow
dynamic

array

Appreciate Johnson FibHeap

Know what
terms mean

stable sorting; stack, queue, priority queue, dictionary;
linked list, doubly linked list; heap, search tree; hash table with chaining or open addressing

If the 𝑂 and Ω for our algorithm don’t match, we haven’t understood it properly. Maybe our 𝑂 bound is
wasteful; maybe we haven’t spotted which input is actually the hardest for our algorithm.

If our 𝑂 for our algorithm doesn’t match our Ω for the problem, either we have a wasteful algorithm, or we
haven’t spotted which input is actually the hardest for any algorithm.

Both of these are fruitful places to look for improvements in our algorithm / our understanding.

What does it mean to find matching 𝑂/Ω bounds
in amortized analysis? [See ex.sheet 6 q.7]

I’ve designed a data structure that
supports push at amortized cost O(1)
and popmin at amortized cost O(log N),
if the number of items never exceeds N.

There’s no convenient Ω-style notation for talking about a ∃ bound for worst-case inputs.

Nonetheless, it’s useful to actually try to find a sequence of operations that hits the proposed upper
bound. If we can’t find one, perhaps we’ve missed an opportunity for getting a better amortized design.

You may be asked to “explain” or “prove” new results.

Memorize
heapsort

binary
heap

Dijkstra

BFS DFS

MaxFlow
dynamic

arrayincluding the
proof / analysis

explain why show show carefully prove

We’ve seen several proofs in this course. Take them as a guide for the level of
detail that’s expected in your proofs. You should memorize some of the proofs,
and for the others you should grasp their essence.

topo sort

Bellman-Ford

matchingsGrasp essence

Exam questions will use keywords to indicate what level of detail is required:

01 from collections import deque

02 def shortest_paths(𝑔, 𝑠, 𝑡):

03 all_shortest_paths = [] # all shortest paths from s to t
04 distance = {𝑠: 0} # shortest distance to each node
05 visited = set([𝑠])
06 queue = deque()
07 queue.append((𝑠, [𝑠]))

08 while queue:
09 (𝑣, path) = queue.popleft()

10 if 𝑣 == 𝑡:
11 all_shortest_paths.append(path)
12 continue

13 for 𝑢 in 𝑔.get(𝑣, []):
14 if 𝑢 not in visited or distance[𝑢] == len(path):
15 visited.add(𝑢)
16 distance[𝑢] = len(path)
17 queue.append((𝑢, path + [𝑢]))

18 return all_shortest_paths

Modify the standard BFS algorithm so that it returns all shortest paths from 𝑠 to 𝑡.

I have tested the algorithm and can confirm it works as expected.
Can you formally prove that this algorithm is correct

The correctness of the algorithm hinges on two fundamental claims:

Claim 1: The algorithm identifies paths that are shortest.

Claim 2: The algorithm exhaustively finds all such shortest paths, without
exclusion.

AC

Invariant: For every vertex 𝑣 reached during the BFS, the path discovered
to 𝑣 from 𝑠 is the shortest path possible.

▪ Base Case: Initially, the path from 𝑠 to itself is [𝑠], trivially the shortest.

▪ Induction Step: Assuming BFS has found the shortest paths to vertices within
distance 𝑑 from 𝑠, any vertex 𝑣 reached at distance 𝑑 + 1 is done by
extending a shortest path of length 𝑑 by one edge, thus maintaining the
shortest path property.

Claim 1: The algorithm identifies paths that are shortest.

QUESTION. What is
involved in a proof by
induction?

In any proof by induction, we have to make it clear what our induction is over. In
other words, what is 𝑛? And we have to spell out our inductive hypothesis 𝑃(𝑛).

A common type of induction is “induction over program execution”. Imagine there’s an assertion at some
line of code, and consider 𝑃(𝑛) to be “At the 𝑛th time we reach this line, my assertion is true.” We call the
assertion an invariant. In lectures, I described this as the breakpoint proof strategy.

There are two common types of induction in graph algorithms.
Let’s compare them, as applied to proving Dijkstra’s algorithm correct.

BREAKPOINT PROOF

Invariant: When a vertex is popped from the
priority queue, its computed distance is correct.

▪ Base case: trivially true for the start vertex

▪ Inductive step: proved by contradiction

ALONG-A -PATH PROOF

Consider any vertex 𝑣, and consider a shortest
path from the start vertex to 𝑣.

Induction claim: For all vertices on this path, the
computed distance is correct.

▪ Base case: trivially true for the start vertex

▪ Inductive step: assuming we correctly set
𝑢.distance, we’ll correctly set the distance of
all 𝑢’s neighbours

This type of induction is used for the proof of Bellman–Ford, and
also in ex4q15 to show that Dijkstra’s algorithm can still be
correct on graphs with negative weights.

Exam question. Let dijkstra_path(𝑔,𝑠,𝑡) be an implementation of

Dijkstra’s shortest path algorithm that returns the shortest path from

vertex 𝑠 to vertex 𝑡 in a graph 𝑔. Prove that the implementation can safely

terminate when it first encounters vertex 𝑡.

DODGY PROOF IN THE STYLE OF CHATGPT:
Consider a shortest path from 𝑠 to 𝑡.

Invariant: Every vertex along this path has the correct computed distance.

▪ Base case: The algorithm sets 𝑠.distance=0, which is correct.

▪ Induction step: Assume that, for a vertex 𝑢 on the path, its computed
distance is correct. When visiting neighbours of 𝑢, including in particular
the next vertex along the shortest path, it will set distance correctly.

Since the algorithm computes 𝑡.distance correctly, it can safely terminate
when it reaches 𝑡.

s a b t

3

1 0

1

0

NOT COVERED IN LECTURE

Note: for the along-a-path induction, when we actually try to prove the inductive step 𝑃 𝑛 ⇒ 𝑃(𝑛 + 1), we find that our
proof only works if we’re running the algorithm all the way to completion. It doesn’t work for the version of Dijkstra that has a
target vertex, and stops as soon as it reaches that target, as this dodgy proof illustrates.

Invariant: For every vertex 𝑣 reached during the BFS, the path discovered
to 𝑣 from 𝑠 is the shortest path possible.

▪ Base Case: Initially, the path from 𝑠 to itself is [𝑠], trivially the shortest.

▪ Induction Step: Assuming BFS has found the shortest paths to vertices within
distance 𝑑 from 𝑠, any vertex 𝑣 reached at distance 𝑑 + 1 is done by
extending a shortest path of length 𝑑 by one edge, thus maintaining the
shortest path property.

Claim 1: The algorithm identifies paths that are shortest.

This purports to be a proof by induction. But what actually is its inductive claim? Whenever we give a
proof by induction, we must make clear what our induction claim is, and what the induction is over.
Here, the word “invariant” suggests induction on program execution (i.e. a breakpoint proof), but the
text of the inductive step suggests an induction over 𝑑 ...

𝑃 𝑑 : for all vertices 𝑣 at distance 𝑑 from 𝑠, whenever (𝑣, 𝑝) is pushed into the queue then 𝑝 is a
shortest path to 𝑣.

This is just my guess. In particular, I’m guessing what is meant by “the path discovered”. The reader
should not have to guess! And, if this is indeed the inductive claim, I can’t actually see how to prove that
𝑃 𝑑 ⇒ 𝑃(𝑑 + 1)!

01 from collections import deque

02 def shortest_paths(𝑔, 𝑠, 𝑡):

03 all_shortest_paths = [] # all shortest paths from s to t
04 distance = {𝑠: 0} # shortest distance to each node
05 visited = set([𝑠])
06 queue = deque()
07 queue.append((𝑠, [𝑠]))

08 while queue:
09 (𝑣, path) = queue.popleft()

10 if 𝑣 == 𝑡:
11 all_shortest_paths.append(path)
12 continue

13 for 𝑢 in 𝑔.get(𝑣, []):
14 if 𝑢 not in visited or distance[𝑢] == len(path):
15 visited.add(𝑢)
16 distance[𝑢] = len(path)
17 queue.append((𝑢, path + [𝑢]))

18 return all_shortest_paths

Alternatively, perhaps ChatGPT had in mind a proof by induction on program execution, i.e. a “breakpoint”
proof, establishing an invariant. What invariant might it have in mind? It takes creativity to come up with a
good invariant! Perhaps an assertion just after line 9, with the corresponding inductive claim:

𝑃(𝑛): at the 𝑛th time we reach this assertion, it is true

See CLRS lemma 22.3 for a proof along these lines of the claim that BFS is correct.

▪ Revisitation Strategy: Vertices can be revisited if reached by a path whose length equals
the shortest distance previously recorded to that vertex. This is crucial for identifying
multiple branching paths that occur within the graph’s structure, ensuring no shortest
path is overlooked.

▪ Path Accumulation and Shortest Distance Tracking: The algorithm maintains a distance
dictionary, tracking the shortest distance to each vertex. When a path to a vertex equals
this shortest distance, the path is considered valid and added to the collection of paths
leading to that vertex. This approach ensures the algorithm accumulates all shortest
paths to each vertex, particularly focusing on the target vertex 𝑡.

▪ Ensuring Completeness: By combining BFS’s layer-by-layer exploration with the
condition-based revisitation of vertices, the algorithm guarantees that all possible
branching paths from 𝑠 to 𝑡, which do not exceed the shortest path length, are explored.
This exploration strategy ensures that no shortest path is missed, fulfilling the
requirement for a complete search.

Claim 2: The algorithm exhaustively finds all such shortest paths, without exclusion.

It’s hard to even make sense of this purported “proof”. Is it an induction? If so, what’s the
induction over? I’d prove it by induction over 𝑑, the distance from 𝑠, with an inductive claim

𝑃(𝑑): for all vertices 𝑣 at distance 𝑑 from 𝑠, for all shortest paths 𝑝 from 𝑠 to 𝑣, we eventually
push (𝑣, 𝑝) into the queue.

This is faintly hinted at in ChatGPT’s phrase “BFS’s layer-by-layer exploration”. Phrases like “is
crucial for” and “this approach ensures” are waffle, and have no place in a rigorous proof.

Recognize that this
is a 𝐴 ⊆ 𝐵, 𝐵 ⊆ 𝐴
problem

Proof that alg. finds
only shortest paths

Proof that alg. finds
all shortest paths
(and terminates)

20

0
Catley Prynn Huang

marks

Each coloured line
represents a
different assessor’s
marks

DJW

PASSIVE LEARNING

▪ read it / watch it

ACTIVE LEARNING

▪ copy it out

▪ hide part of the proof,
and try to fill it in

▪ identify the “beats”
of the argument

REFLECTIVE LEARNING

▪ refactor it to be
more elegant

▪ see if it still works
when we tweak the
problem statement

How to learn a proof

	Slide 1: Examinable material
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6: You may be asked to “explain” or “prove” new results.
	Slide 7
	Slide 8
	Slide 9
	Slide 10: There are two common types of induction in graph algorithms. Let’s compare them, as applied to proving Dijkstra’s algorithm correct.
	Slide 11: NOT COVERED IN LECTURE
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17

