
movies

movie_id title year

0126029 Shrek 2001

0181689 Minority Report 2002

0212720 A.I. Artificial Intelligence 2001

0983193 The Adventures of Tintin 2011

4975722 Moonlight 2016

5010201 Dunkirk 2017

5012394 Maigret Sets a Trap 2016

SELECT *
FROM movies
WHERE year > 2015

year movie_id

2001 0126029

2001 0212720

2002 0181689

2011 0983193

2016 5012394

2016 4975722

2017 5010201

CREATE INDEX ind1 ON movies (year)

This sort of query can be answered efficiently with an index.

▪ An index contains a set of (key,value) pairs,
ordered by key.

▪ It should support efficient search,
as well as efficient insert / delete.

Fastidious Frances
(everything pristine

all of the time)

N

D

A I

S

O

R

U

Crunch-time Charlie
(quick and dirty,

too harried to learn)

N

D

S

I

P

O

FREE-FORM
BINARY SEARCH TREE

BALANCED
BINARY SEARCH TREE

Timely Terry
(no sweat,

plans ahead)

insert/delete fast,
search can be slow

search is fast,
insert/delete slow

Q. Can we design a
roughly-balanced search
tree, but without being
obsessive about it?

Genius idea: let’s keep the depth perfectly balanced,
but let the nodes have a variable number of children.
E.g. let’s require that each non-leaf node have 2, 3, or 4 children.

N

D

A I

S

O UI

A A A A A AA A A A AA A AA

To fit the standard BST design, let’s store 1, 2, or 3 items at each node, #children = #items + 1

𝑘1 𝑘2

all keys
ℓ have
ℓ < 𝑘1

all keys
ℓ have

𝑘1 < ℓ < 𝑘2

all keys
ℓ have
ℓ > 𝑘2

Genius idea: let’s keep the depth perfectly balanced,
but let the nodes have a variable number of children.

To fit the standard BST design, let’s store 1, 2, or 3 items at each node, #children = #items + 1

E.g. let’s require that each non-leaf node have 2, 3, or 4 children.

Q1. Is this balanced enough to give 𝑂(log 𝑛) search,
where 𝑛 is the number of (key,value) pairs?

Q2. Is this flexible enough that we can do insert/delete in 𝑂 log 𝑛 ,
while maintaining the rough balance?

𝑘1 𝑘2

all keys
ℓ have
ℓ < 𝑘1

all keys
ℓ have

𝑘1 < ℓ < 𝑘2

all keys
ℓ have
ℓ > 𝑘2

𝑘0 𝑘1

A B-tree is a perfectly height-balanced search tree,
where each node has #keys ∈ {𝑘min, … , 𝑘max}
(apart perhaps from the root, which may have fewer)

𝑘𝑚−1⋯

⋯
𝑐0 𝑐1

𝑐𝑚

For a node with 𝑚 (key,value) pairs,

▪ There are 𝑚 + 1 child subtrees (unless it’s a leaf)

▪ All keys ℓ in child 𝑐𝑖 satisfy 𝑘𝑖−1 < ℓ < 𝑘𝑖
(with appropriate adjustment at 𝑖 = 0 and 𝑖 = 𝑚)

QUESTION. For a tree with
𝑛 keys in total, what’s the
largest possible height?

QUESTION. Why put an
upper bound on #keys
per node?

2-3-4 trees
and B-trees

SECTIONS 4.4 & 4.6

insert(𝑘, 𝑣) into a tree with 𝑘min = 1 and 𝑘max = 3

B D E

G

I

L M
K

B D E

G

I

L M

K

B D E

G

I

L M
A

G

I

L M

B E

D G

I

L M

B EA

EASY CASE

simple
insertion
into a leaf

HARDER CASE

insertion into
a full leaf

simple insert

simple insert
The destination
leaf is full, so split
it by promoting its
median key

insert
this

insert
this

D

QUESTION. Where
do we insert key A?
And how?

B D E

G

I

L M

G

I

L M

B E

The destination
leaf is full, so split
it by promoting its
median key

D

B D E

G

I

L M

G

I

L M

B E

The destination
leaf is full, so split
it by promoting its
median key

D

To keep our tree balanced, excess keys need to
be pushed up.

HARDEST CASE

insertion into
a full leaf on a
full path

L M

N

O P S

T W

R

insert(𝑘, 𝑣) into a tree with 𝑘min = 1 and 𝑘max = 3

def insert(𝑘,𝑣):
 if root node is full:
 split it, and create new root
 𝑥 ← root node

 while 𝑥 is not a leaf:
 # assert 𝑥 is not full
 scan 𝑥 to find which child 𝑦 we want 𝑘 in
 if 𝑦 is not full:
 𝑥 ← 𝑦
 else:
 split 𝑦 into 𝑦1 and 𝑦2 and promote a key
 𝑥 ← 𝑦1 or 𝑦2 as appropriate

 insert (𝑘,𝑣) into 𝑥

L M

O P S

N W

T
R

L M T

N W

O S

L M T

N WP

O SR

split child,
descend

split child,
descend

P
R

insert
this

QUESTION. How do
we insert key R?

NOTE. This code is
suitable for the
general case. It may
unnecessarily split
some nodes at the
top, but who cares?

QUESTION. Does this
splitting operation
constrain 𝑘min and 𝑘max?

To keep our tree balanced, excess keys need to
be pushed up.

From time to time, we may have to add a new
node at the top. The tree becomes higher, but
it remains perfectly height-balanced,

delete(𝑘) from a tree with 𝑘min = 1 and 𝑘max = 3

EASY CASE

simple
deletion
from a leaf

A

L M

B

D G

delete
this

L M

B

D G

delete
this

I

L M

D G

A B I

L M

G

I

L M

B G

A DA D

B

HARDER CASE

deletion from a
bare-bones leaf
(i.e. one with only
𝑘min keys)

simple delete

We can “fatten”
the leaf by
stealing a key
from a sibling,
and “rotating”.

simple delete

E E

delete(𝑘) from a tree with 𝑘min = 1 and 𝑘max = 3

I

delete
this

HARDERER CASE

deletion from a
bare-bones leaf,
with bare-bones
siblings

L M

D G

A B E I

L M

A B E

D

L M

A B

D

E GG
Merge with a
sibling, by stealing
a key from the
parent.

simple delete

QUESTION. Does this
merging operation
constrain 𝑘min and 𝑘max?

delete(𝑘) from a tree with 𝑘min = 1 and 𝑘max = 3

MHARDEST CASE

deletion from a
bare-bones leaf
on a bare-bones
path

D G T

N W

def delete(𝑘):
 𝑥 ← root node
 while 𝑥 is not a leaf:
 # assert 𝑥 has > 𝑘min keys (or is root)
 if 𝑥 has key 𝑘:

 ⋯

 else:
 scan 𝑥 to find the child 𝑦 that has 𝑘
 if 𝑦 has 𝑘min keys:
 either rotate or merge to make 𝑦 fatter
 𝑥 ← 𝑦

 delete 𝑘 from 𝑥

delete
this

H

G

TMD

N WH

m
e
r
g
e D

G

WMH

T

N

rot
ate

D

G

WMH

T

To keep our tree balanced, deletions suck in
keys from beside or above.

From time to time, we may suck down the root
when merging its children. The tree becomes
shorter, and it remains perfectly height-
balanced,

How should we choose 𝑘min and 𝑘max?

▪ height = 𝑂(log 𝑛) as long as 𝑘min ≥ 1

▪ The work at each node is 𝑂(1) as long as 𝑘max < ∞

▪ We need 𝑘max ≥ 2𝑘min + 1 for merging/splitting to work

Are there any other considerations that can guide us to specific choices?

⋯ ⋯ ⋯

1 block = 512 kB

1 page = 4 kB

▪ An SSD consists of many blocks, each made of many pages
▪ We read and write an entire page at a time
▪ Reading and writing to an SSD is very slow, compared to main memory access

⇒ Choose 𝑘max so that a node takes up an entire page,
 and choose 𝑘min as large as possible, i.e. 𝑘min = (𝑘max − 1)/2, to keep pages full

If we’re storing our index on an SSD:

This is called a B-tree.

If we’re storing our index in main memory ...

we’ll make a different choice of 𝑘min and 𝑘max.

	Slide 1
	Slide 2
	Slide 3: Genius idea: let’s keep the depth perfectly balanced, but let the nodes have a variable number of children.
	Slide 4: Genius idea: let’s keep the depth perfectly balanced, but let the nodes have a variable number of children.
	Slide 5
	Slide 6
	Slide 7: 2-3-4 trees and B-trees
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19: How should we choose k sub min and k sub max?
	Slide 20
	Slide 21: If we’re storing our index on an SSD:
	Slide 22: If we’re storing our index in main memory ...

