
Indexing algorithms

SECTIONS 4.3–4.6 



We have already spoken of a table having an index.

An index is a data structure – created and maintained within a 
database system – that can greatly reduce the time needed to 
locate records. 

• IA Algorithms presents useful data structures for implementing 
database indices (search trees, hash tables, and so on).

• While an index can speed up reads, it will slow down updates. In 
some cases it is better to store read-oriented data in a separate 
database optimised for that purpose. 
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CREATE INDEX ind1 ON my_table (my_column)



movies

movie_id title year

0126029 Shrek 2001

0181689 Minority Report 2002

0212720 A.I. Artificial Intelligence 2001

0983193 The Adventures of Tintin 2011

4975722 Moonlight 2016

5010201 Dunkirk 2017

5012394 Maigret Sets a Trap 2016

SELECT *
FROM movies
WHERE year > 2015

year movie_id

2001 0126029

2001 0212720

2002 0181689

2011 0983193

2016 5012394

2016 4975722

2017 5010201

CREATE INDEX ind1 ON movies (year)

SLOW METHOD

Scan through all rows of the movies table and pick out those that match

FAST METHOD

cursor = ind1.search_gt(2015)
while not ind1.at_end(cursor):
    m_id = cursor.movie_id
    m = movies.primary_key.search(m_id)
    print(m)
    cursor = ind1.next(cursor)



AbstractDataType Index:
    # Holds a collection of (key,value) pairs, where there is an ordering on keys.
    # Typically, values are small, e.g. pointers to objects in memory.

    # Find a key (if it exists) and return a cursor.
    # This cursor lets us access the (key,value) we found.
    Cursor search(Key k)
    Cursor search_gt(Key k)
    etc.

    # Move the cursor; and test if it’s gone past the end of the data.
   # (We may also wish to support min() and max() operations.)
    Cursor next(Cursor c)
    Cursor prev(Cursor c)
    bool at_end(Cursor c)

    # Modify the contents of the data structure
    insert(Key k, Value v)
    delete(Key k)

NOTE. Sensible database indexes allow 
multiple items with the same key. But for 
consistency with notes & textbook, we’ll 
assume keys are unique.

cursor = ind1.search_gt(2015)
while not ind1.at_end(cursor):
    m_id = cursor.movie_id
    m = movies.primary_key.search(m_id)
    print(m)
    cursor = ind1.next(cursor)



Fastidious Frances
(everything pristine

all of the time)

A D I N O R S U

SORTED ARRAY

An array of 𝑛 (key,value) records, sorted by key

▪ search is fast, 𝑂(log 𝑛), using repeated bisection
▪ next is trivial, 𝑂(1)
▪ insert/delete are slow, 𝑂(𝑛)

BALANCED BINARY SEARCH TREE
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Each node stores a (key,value) record, call it (𝑘, 𝑣)
Its left subtree consists of records (𝑘′, 𝑣′) with 𝑘′ < 𝑘
Its right subtree consists of records (𝑘′, 𝑣′) with 𝑘′ > 𝑘

Subtree sizes are balanced



Binary search trees

SECTION 4.3 



BALANCED BINARY SEARCH TREE
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Each node stores a (key,value) record, call it (𝑘, 𝑣)
Its left subtree consists of records (𝑘′, 𝑣′) with 𝑘′ < 𝑘
Its right subtree consists of records (𝑘′, 𝑣′) with 𝑘′ > 𝑘
Subtree sizes are balanced
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search(𝑘)

Start at 𝑥=root node.

If 𝑥.key=𝑘, we’re done.

Otherwise, set 𝑥 ← 𝑥.left or 
𝑥 ← 𝑥.right as appropriate, 
and repeat.
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F not 
found

found R



BALANCED BINARY SEARCH TREE
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Each node stores a (key,value) record, call it (𝑘, 𝑣)
Its left subtree consists of records (𝑘′, 𝑣′) with 𝑘′ < 𝑘
Its right subtree consists of records (𝑘′, 𝑣′) with 𝑘′ > 𝑘
Subtree sizes are balanced
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next(𝑥)

If 𝑥 has a right-child, take it, then 
go down-left as far as possible. 
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If 𝑥 has no right-child, go up until 
our first up-right. (If we reach the root 

without an up-right, we’re at the end.)

QUESTION. What’s the 
next item after N? What’s 
the procedure to find it?

QUESTION. What’s the 
next item after I? What’s 
the procedure to find it?



BALANCED BINARY SEARCH TREE
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Each node stores a (key,value) record, call it (𝑘, 𝑣)
Its left subtree consists of records (𝑘′, 𝑣′) with 𝑘′ < 𝑘
Its right subtree consists of records (𝑘′, 𝑣′) with 𝑘′ > 𝑘
Subtree sizes are balanced

insert(𝑘, 𝑣), delete(𝑘)

Horrid!

insert is easy enough if we don’t mind an unbalanced tree, 
but balanced makes it very tough.

delete is fiddly, even in an unbalanced tree.



FREE-FORM BINARY SEARCH TREE
A binary search tree as before, 
but we won’t require subtrees to be balanced.

Crunch-time Charlie
(quick and dirty,

too harried to learn)

insert(𝑘, 𝑣)

𝑥 ← search 𝑘  and if search fails 
then let 𝑥 be the last node searched.

If search fails, create a new node 
(𝑘, 𝑣) and set it to be a child of 𝑥.

If search succeeded, update 𝑥.val ← 𝑣
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QUESTION. Where should 
we insert A? What’s the 
procedure for insertion?



FREE-FORM BINARY SEARCH TREE
A binary search tree as before, 
but we won’t require subtrees to be balanced.

Crunch-time Charlie
(quick and dirty,

too harried to learn)

delete(𝑘)
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Deleting a leaf node is easy.
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To delete a node with one 
child, replace it by its child.
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If there are two children:
find the successor 𝑠, delete it, 
overwrite 𝑘’s node with 𝑠.
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delete 
this

delete 
this

delete 
this

QUESTION. How do 
we delete node S?

QUESTION. How do 
we delete node N?



insert/delete search

balanced BST horrid
𝑂(height)

unbalanced BST 𝑂(height)

Timely Terry
(no sweat,

plans ahead)

worst-case height is 𝑂(log 𝑛)

worst-case height is Ω(𝑛)

… for an index with 𝑛 items

Can I design a BST 
that’s roughly 

balanced, but without 
being obsessive 

about it?

𝑂(𝑛)
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