A \ejon'eh ms 1
SECTIONS 4.3-4.6

Indexing algorithms



|A Databases

We have already spoken of a table having an index.

An index is a data structure — created and maintained within a
database system — that can greatly reduce the time needed to
locate records.

CREATE INDEX indl ON my table (my_column)

* |A Algorithms presents useful data structures for implementing
database indices (search trees, hash tables, and so on).
R ——] —— e

*  While an index can speed up reads, it will slow down updates. In
some cases it is better to store read-oriented data in a separate
database optimised for that purpose.

djg11 (cl.cam.ac.uk)



movies CREATE INDEX indl ON movies (year)

movie_id title year year movie_id
0126029 Shrek 2001 2001 0126029
0181689 Minority Report 2002 2001 0212720
0212720 A.l. Artificial Intelligence 2001 2002 0181689
0983193 The Adventures of Tintin 2011 2011 0983193
‘ 4975722 Moonlight 2016 ‘ 2016 5012394
EE) 5010201  Dunkirk 2017 2016 4975722
‘ 5012394 Maigret Sets a Trap 2016 2017 5010201

SELECT *
FROM movies
WHERE year > 2015

SLOW METHOD
Scan through all rows of the movies table and pick out those that match

FAST METHOD
cursor = ind1.search_gt(2015)
while not ind1.at_end(cursor):
m_id = cursor.movie_id
m = movies.primary_key.search(m_id)
print(m)
cursor = ind1.next(cursor)



AbstractDataType Index:

search( k)
Cursor search_gt(Key k)
etc.

next ( c)
Cursor prev(Cursor c)
bool at_end(Cursor c)

NOTE. Sensible database indexes allow
insert( K, v) multiple items with the same key. But for
delete( k) consistency with notes & textbook, we’ll

assume keys are unique.

cursor = ind1.search_gt(2015)
while not ind1.at_end(cursor):
m_id = cursor.movie_id
m = movies.primary_key.search(m_id)
print(m)
cursor = ind1.next(cursor)




Fastidious Frances
(everything pristine
all of the time)

SORTED ARRAY

An array of n (key,value) records, sorted by ke e, vale ‘s o pocwier
Y (key VY lev ]; recovel 5fwt$ <(sewhue
= searchis fast, O(logn), using repeated bisection

= next is trivial, O(1)
" insert/delete areslow, O(n)

BALANCED BINARY SEARCH TREE

Each node stores a (key,value) record, call it (k, v)
Its left subtree consists of records (k', v") with k' < k
Its right subtree consists of records (k', v") with k' > k W

Subtree sizes are balanced



SECTION 4.3

Binary search trees



search(k) /E
N .. N
Start at x=root node. PN N T
If x.key=k, we’re done 0 4 7N
key=k, - /N 74 2 /
Otherwise, set x « x.left or A I 0 \‘4 U A I 0
X « x.right as appropriate, . F not )
found R[> no R
and repeat. : found

—BAANCED-BINARY SEARCH TREE

Each node stores a (key,value) record, call it (k, v)

Its left subtree consists of records (k', v") with k' < k
Its right subtree consists of records (k', v") with k' > k
Subtree-sizes-are-batanced-

~~
o 0
000 O

o




QUESTION. What's the
next item after N? What's
next(x) the procedure to find it?

If x has a right-child, take it, then
go down-left as far as possible.

(2

N
TN
D S
7\ A"\
A | 0 U
\
R

QUESTION. What’s the

next item after I? What’s
the procedure to find it?

If x has no right-child, go up until

our first up-right. (if we reach the root
without an up-right, we’re at the end.)

N
TN
D S
/N VRN
A I@O U
\

R

—BAANCED-BINARY SEARCH TREE

Each node stores a (key,value) record, call it (k, v)
Its left subtree consists of records (k', v") with k' < k
Its right subtree consists of records (k', v") with k' > k

Subtreesizesarebalanced-

o
N
o 0
000 O
o




insert(k,v), delete(k)

ExX@rci'R.
Horrid! O(V\) o rebolancg e €reR.

insert is easy enough if we don’t mind an unbalanced tree,
but balanced makes it very tough.

delete is fiddly, even in an unbalanced tree.

BALANCED BINARY SEARCH TREE Q/ \e

Each node stores a (key,value) record, call it (k, v) / A\ N\

Its left subtree consists of records (k’,v") with k' < k o ’ Q °
Its right subtree consists of records (k', v") with k' > k \

Subtree sizes are balanced °




Crunch—time Charlie
(quick and dirty,
too harried to learn)

‘ FREE-FORM BINARY SEARCH TREE \e

A binary search tree as before,
- but we won’t require subtrees to be balanced. /

= 00
Q QUESTION. Where should
we insert A? What's the

procedure for insertion?

~
0

insert(k,v) @ D@ D@
x « search(k) and if search fails / T~ S A 4 \% S

then let x be the last node searched. / / \
If search fails, create a new node N N
(k,v) and set it to be a child of x. / N\ / N\

I @) I O
If search succeeded, update x.val « v




P4
Crunch—-time Charlie D I N, O, PS
Which & O,

(quick and dirty, ook at (e socamssar & N, chg rven, Hien poe ™ N's

. we an ekévack O (Tom
too harried to learn) ‘Pt"m work mess op any & the areurivy relekbg

oince WOthbeackMiv\mw \
‘ FREE-FORM BINARY SEARCH TREE e
A binary search tree as before, /
’ - but we won’t require subtrees to be balanced. °

00
\

QUESTION. How do QUESTION. How do °

we delete node S? we delete node N?
delete(k)
Deleting a leaf node is easy. To delete a node with one If there are two children:
child, replace it by its child. find the successor s, delete it,
/ / overwrite k’s node with s.
N |:> N
\ \ , de_lete
ok . o= WQ — Q —
delete N\ \ lete / \ @
this |\| thus O P P
P




Can I'design a BST
that's roughly
balanced, but without

being obsessive
about it?

Timely Terry

(no sweat,
plans ahead) 0O O

\O
o,
/
insert/delete search (&0
balanced BST horrid O(n) worst-case height is O(logn) \O
O (height)
unbalanced BST  O(height) worst-case height is Q(n)

\g
q

... for an index with n items



	Slide 1: Indexing algorithms
	Slide 2: IA Databases
	Slide 3
	Slide 4
	Slide 5
	Slide 6: Binary search trees
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12

