
TODAY’S TOPIC 1/3

Analysis of the Fibonacci Heap

▪ Stores a collection of trees,
each of them a heap

▪ Nodes that have lost one child
are marked L and nodes that lose two
children are disowned by their parents

L

L

L

For good amortized costs, we want
degree = 𝑂 log 𝑁 .

Does our algorithm actually achieve this?

TODO: SHAPE THEOREM

In a Fibonacci heap with ≤ 𝑁 items,
every node has degree ≤ log𝜙 𝑁

SHAPE THEOREM

In a Fibonacci heap with 𝑁 items, every node has degree ≤ log𝜙 𝑁

SHAPE LEMMA

Consider a subtree in a Fibonacci heap. If the subtree’s root
has 𝑑 children, then the number of nodes in the subtree is
≥ 𝐹𝑑+2 where 𝐹1, 𝐹2, … are the Fibonacci numbers

page 74

SHAPE THEOREM

In a Fibonacci heap with 𝑁 items, every node has degree ≤ log𝜙 𝑁

SHAPE LEMMA

Consider a subtree in a Fibonacci heap. If the subtree’s root
has 𝑑 children, then the number of nodes in the subtree is
≥ 𝐹𝑑+2 where 𝐹1, 𝐹2, … are the Fibonacci numbers

Proof of theorem.
Pick a node with maximum degree, call it 𝑑,
and consider the subtree rooted at this node.

 𝑁 ≥ num.nodes in subtree

 ≥ 𝐹𝑑+2

 ≥ 𝜙𝑑

Hence 𝑑 ≤ log𝜙 𝑁.

page 74

SHAPE LEMMA

Consider a subtree in a Fibonacci heap. If the subtree’s root
has 𝑑 children, then the number of nodes in the subtree is
≥ 𝐹𝑑+2 where 𝐹1, 𝐹2, … are the Fibonacci numbers

page 74

popmin()

7 1

34

6

5 2

7

6

5 2

4

6

5 2

5 2

7

3

4

6

7

3

4

6

5

2

M

M

extract min root
34

7 3

4

6 7

3

5 2

1

1

set M

12
13
14
15
16
17
18
19

def popmin():
take note of minroot.value and minroot.key
delete the minroot node, and promote its children to be roots
cleanup the roots
while there are two roots with the same degree:

merge those two roots, by making the larger root a child of the smaller
update minroot to point to the root with the smallest key
return the value and key we noted in line 13

page 65-66

SHAPE LEMMA

Consider a subtree in a Fibonacci heap. If the subtree’s root
has 𝑑 children, then the number of nodes in the subtree is
≥ 𝐹𝑑+2 where 𝐹1, 𝐹2, … are the Fibonacci numbers

GRANDCHILD RULE
A node 𝑥 is said to satisfy the grandchild rule if its children can be ordered, call them
𝑦1, … , 𝑦𝑑, such that for all 𝑖 ∈ {1, … , 𝑑}

num. grandchildren of 𝑥 via 𝑦𝑖 ≥ 𝑖 − 2

𝑥

𝑦1

𝑥

𝑦1𝑦3

𝑥

𝑦2

𝑥

𝑦1𝑦2
𝑦1𝑦3

𝑥

𝑦2

ALGORITHMIC CLAIM
In a Fibonacci heap, at every instant in time, every node 𝑥 satisfies the grandchild
rule, when we order its children 𝑦1, … , 𝑦𝑑 by when they became children of 𝑥

when 𝑥 acquired
𝑦2, 𝑥 had a child
already, so 𝑦2 did
too

when 𝑥 acquired
𝑦3, 𝑥 had two
children already,
so 𝑦3 did too

each 𝑦𝑖 might
have lost a single
child

𝑦1 now has ≥ 0 children
𝑦2 now has ≥ 0 children
𝑦3 now has ≥ 1 child
⋮
𝑦𝑑 now has ≥ 𝑑 − 2 children

page 74

SHAPE LEMMA

Consider a subtree in a Fibonacci heap. If the subtree’s root
has 𝑑 children, then the number of nodes in the subtree is
≥ 𝐹𝑑+2 where 𝐹1, 𝐹2, … are the Fibonacci numbers

GRANDCHILD RULE
A node 𝑥 is said to satisfy the grandchild rule if its children can be ordered, call them
𝑦1, … , 𝑦𝑑, such that for all 𝑖 ∈ {1, … , 𝑑}

num. grandchildren of 𝑥 via 𝑦𝑖 ≥ 𝑖 − 2

MATHEMATICAL CLAIM
Consider a tree where all nodes satisfy the grandchild rule. Let 𝑁𝑑 be the smallest
number of nodes in a tree whose root has 𝑑 children. Then 𝑁𝑑 = 𝐹𝑑+2.

child 𝑦𝑖 has degree ≥ 𝑖 − 2,
so its subtree has ≥ 𝑁𝑖−2 nodes

num.nodes in tree ≥ 𝑁𝑑−2 + 𝑁𝑑−3 + ⋯ + 𝑁1 + 𝑁0 + 𝑁0 + 1

page 74

SECTION 7.7

Implementing the
Fibonacci heap

TODAY’S TOPIC 2/3

def dijkstra(g, 𝑠):
...
toexplore = PriorityQueue()
toexplore.push(𝑠, key=0)

while not toexplore.is_empty():
𝑣 = toexplore.popmin()
for (𝑤,edgecost) in 𝑣.neighbours:

dist_w = 𝑣.distance + edgecost
...

toexplore.decreasekey(𝑤, key=dist_w)

𝑣

𝑤

heap node
containing
payload 𝑤

parent node
in heap

children
in heap

page 69

QUESTION. How can decreasekey be
𝑂 log 𝑁 ?

Doesn’t it take 𝑂(𝑁) in the first place,
to find the heap node that we want to
decrease?

graph vertex

𝑣

𝑤

heap node
containing
payload 𝑤

parent node
in heap

children
in heap

page 69

QUESTION. How can decreasekey be
𝑂 log 𝑁 ?

Doesn’t it take 𝑂(𝑁) in the first place,
to find the heap node that we want to
decrease?

def dijkstra(g, 𝑠):
...
toexplore = PriorityQueue()
toexplore.push(𝑠, key=0)

while not toexplore.is_empty():
𝑣 = toexplore.popmin()
for (𝑤,edgecost) in 𝑣.neighbours:

dist_w = 𝑣.distance + edgecost
...

toexplore.decreasekey(𝑤, key=dist_w)

graph vertex

TODAY’S TOPIC 3/3

Fastidious Frances
(everything pristine

all of the time)

Crunch-time Charlie
(quick and dirty,

too harried to learn)

Timely Terry
(no sweat,

plans ahead)

BINARY HEAP
push is slow, 𝑂(log 𝑁)
popmin is fast, 𝑂(log 𝑁)

head minitem

LINKED LIST PRIORITY QUEUE
push is fast, 𝑂(1)
popmin is slow, 𝑂(𝑁)

FIBONACCI HEAP
push is fast, 𝑂(1)
popmin is fast, 𝑂(log 𝑁)

SECTION 7.9

Disjoint sets

TODAY’S TOPIC 3/3

43

1

2
9

6

5

7

8

d

b

f

e

c

a

d

b

f

e

c

a

1
2
3
4
5
6
7
8
9

10
11
12
13

def kruskal(g):
tree_edges = []
partition = DisjointSet()
for v in g.vertices:

partition.add_singleton(v)
edges = sorted(g.edges, sortkey = 𝜆(u,v,weight): weight)

for (u,v,edgeweight) in g.edges:
p = partition.get_set_with(u)
q = partition.get_set_with(v)
if p != q:

tree_edges.append((u,v))
partition.merge(p, q)

e

f

a

b
c

d

a

b

d

AbstractDataType DisjointSet:
 # Holds a dynamic collection of disjoint sets

 # Add a new set consisting of a single item (assuming it's not been added already)
 add_singleton(Item x)

 # Return a handle to the set containing an item.
 # The handle must be stable, as long as the DisjointSet is not modified.
 Handle get_set_with(Item x)

 # Merge two sets into one
 merge(Handle x, Handle y)

e

f

a

b
c

d

"h1""h2"

g "h3"

IMPLEMENTATION 0

handles = {a:"h1", b:"h1", c:"h2", d:"h2", e:"h2", f:"h2", g:"h3"}

def merge(x,y):
 for every item in the entire collection:
 if the item’s handle is y then update it to be x

Each item points to a representative item for its set

handles = {a:a, b:a, c:e, d:e, e:e, f:e, g:g}

IMPLEMENTATION 0'

b

g

e

f

a

c

d

e

f

a

b
c

d

Each item points to a representative item for its set
Each set has a linked list, starting at its representative

g

IMPLEMENTATION 1 “FLAT FOREST”

merge

def merge(x,y):
 for every item in set y:
 update it to belong to set x

def get_set_with(x):
 return x's parent

e

f

a

b
c

d

Each item points to a representative item for its set
Each set has a linked list, starting at its representative

g

IMPLEMENTATION 1 “FLAT FOREST”

merge

def merge(x,y):
 for every item in set y:
 update it to belong to set x

def get_set_with(x):
 return x's parent

FLAT FOREST
get_set_with is 𝑂(1)
merge is 𝑂(𝑁)

everything pristine
all of the time

quick and dirty
too harried to learn

QUESTION. How can we
design a DisjointSet so
that merge is 𝑂(1)?

e

f

a

b
c

d

Sets are stored as trees
Use the root item to represent the set

def merge(x,y):
 update one of the roots to point to the other

g

IMPLEMENTATION 2 “DEEP FOREST”

merge

def get_set_with(x):
 walk up the tree from x to the root
 return this root

QUESTION. What’s a
sensible heuristic for merge,
to speed up get_set_with?

everything pristine
all of the time

quick and dirty
too harried to learn

FLAT FOREST
get_set_with is 𝑂(1)
merge is 𝑂(𝑁)

DEEP FOREST
get_set_with is slower
merge is 𝑂(1)

no sweat
plans ahead

QUESTION. Can we have
merge be 𝑂(1), and also
manifest our get_set_with
working so that subsequent
operations benefit?

key=3 key=1 key=5 key=4

A B C D

1. Find the largest key, and put it at the end

▪ Start with largest-so-far = A
▪ Is B.key > A.key? No.
▪ Is C.key > A.key? Yes.
▪ Is D.key > C.key? No.
▪ Swap C and D

2. Find the largest out of [A,B,D]

Can we ‘manifest’ our workings so that subsequent operations benefit?

SelectSort

Repeatedly scan for the
largest remaining item,
and move it to the sorted-
chunk at the end.

key=3 key=1 key=4 key=3

A B D C

We had a useful piece
of information, but we
didn’t keep it for the
2nd pass.

The heap is a way to manifest what
we’ve learnt so far, so we can re-use
it in later passes. That’s why
HeapSort is better than SelectSort.

everything pristine
all of the time

quick and dirty
too harried to learn

FLAT FOREST
get_set_with is 𝑂(1)
merge is 𝑂(𝑁)

DEEP FOREST
get_set_with is slower
merge is 𝑂(1)

no sweat
plans ahead

QUESTION. Can we have
merge be 𝑂(1), and also
manifest our get_set_with
working so that subsequent
operations benefit?

def merge(x,y):
 as before, using the Union by Rank heuristic

def get_set_with(x):
 walk up the tree from x to the root
 walk up again, and make items in this path point to root
 return this root

IMPLEMENTATION 3 “LAZY FOREST”

merge get_set_with(𝑥)

𝑥 𝑥

Aggregate complexity analysis

Flat Forest
(with weighted-union)

Deep Forest
(with union-by-rank)

Lazy Forest
(with union-by-rank + path compression)

Any 𝑚 operations on up to 𝑁 items takes
𝑂(𝑚 + 𝑁 log 𝑁)

𝑂(𝑚 log 𝑁)

𝑂(𝑚 𝛼(𝑁))

𝛼(𝑁) = 0

= 1

= 2

= 3

for 𝑁 = 0,1,2

for 𝑁 = 3

for 𝑁 = 4 .. 7

for 𝑁 = 8 .. 2047

= 4 for 𝑁 = 2048 .. 1080

[Ex. sheet 6 q. 13]

Aggregate complexity analysis

Flat Forest
(with weighted-union)

Deep Forest
(with union-by-rank)

Lazy Forest
(with union-by-rank + path compression)

Any 𝑚 operations on up to 𝑁 items takes
𝑂(𝑚 + 𝑁 log 𝑁)

𝑂(𝑚 log 𝑁)

𝑂(𝑚 𝛼(𝑁))

𝛼(𝑁) = 0

= 1

= 2

= 3

for 𝑁 = 0,1,2

for 𝑁 = 3

for 𝑁 = 4 .. 7

for 𝑁 = 8 .. 2047

= 4 for 𝑁 = 2048 .. 1080

Aggregate complexity analysis

Flat Forest
(with weighted-union)

Deep Forest
(with union-by-rank)

Lazy Forest
(with union-by-rank + path compression)

Any 𝑚 operations on up to 𝑁 items takes
𝑂(𝑚 + 𝑁 log 𝑁)

𝑂(𝑚 log 𝑁)

𝑂(𝑚 𝛼(𝑁))

𝛼(𝑁) = 0

= 1

= 2

= 3

for 𝑁 = 0,1,2

for 𝑁 = 3

for 𝑁 = 4 .. 7

for 𝑁 = 8 .. 2047

= 4 for 𝑁 = 2048 .. 1080

1. take a handsome stoat

2. define a graph
vertices on a grid, and edges
between adjacent grid cells

3. assign edgeweights
weight=low means vertices
have similar colours

4. run Kruskal
and find clusters of similar
colour

Fastidious Frances Crunchtime Charlie Timely Terry

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24: Can we ‘manifest’ our workings so that subsequent operations benefit?
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31

