floordrobe, *noun*. A heap of clothing left on the floor of a room. *In computer science:* the most perfect design for an advanced data structure.

Pushing N items is $O(N \log N)$ — but if we're clever we can create a binary heap of N items in O(N).

	popmin	push	decreasekey
binary heap	$O(\log N)$	$O(\log N)$	$O(\log N)$
binomial heap	$O(\log N)$	$O(\log N)$	$O(\log N)$
		0(1) amortized	

Dijkstra's algorithm makes O(E) calls to push / decreaskey, and only O(V) calls to popmin.

QUESTION1. Can we make both push and decreasekey be O(1)?

QUESTION2. What's the binomial heap's secret sauce that lets it have O(1) push?

Pushing N items is $O(N \log N)$ — but if we're clever we can create a binary heap of N items in O(N).

	popmin	push	decreasekey
binary heap	$O(\log N)$	$O(\log N)$	$O(\log N)$
binomial heap	$O(\log N)$	$O(\log N)$	$O(\log N)$
		0(1) am	ortized

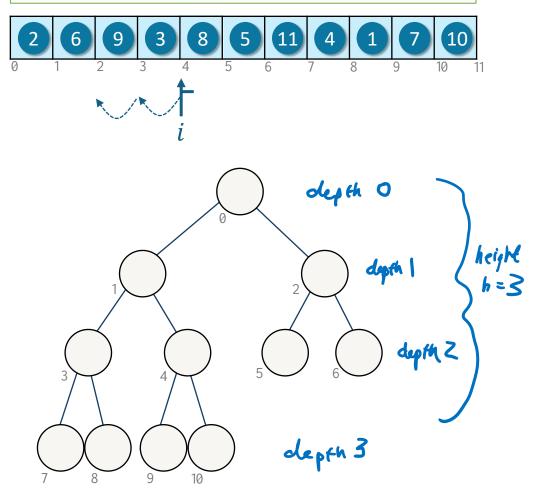
- When we reheapify from depth d it takes h d work to bubble down, and there are $\leq 2^d$ items that need this work.
- There are more items at greater depths, and it's these items that take the least work.
- Total work is $\sum_{d=0}^{h} 2^{d} (h d)$

 $\leq 2 \times 2^{h} = 2N$ [printed notes chapter 2.10]

Fast binary-heapification

for i in ([N/2]-1)..0:
 # assert: trees rooted at (i+1)..N are heaps

re-heapify the tree rooted at x[i]
by bubbling down

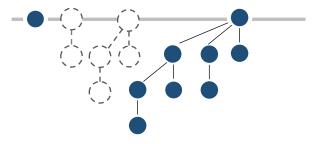


Pushing N items is $O(N \log N)$ — but if we're clever we can create a binary heap of N items in O(N).

	popmin	push	decreasekey
binary heap	$O(\log N)$	$O(\log N)$	$O(\log N)$
binomial heap	$O(\log N)$	$O(\log N)$	$O(\log N)$
		0(1) am	ortized

SECRET SAUCE. Design your data structure so that most of the time it's sufficient to only touch a small bit of it.

- The binary heap's fast-heapification achieves this through doing its work in a batch (rather than push by push)
- The binomial heap achieves this by splitting up the heap into semi-isolatable trees



Pushing N items is $O(N \log N)$ — but if we're clever we can create a binary heap of N items in O(N).

	popmin	push	decreasekey
binary heap	$O(\log N)$	$O(\log N)$	$O(\log N)$
binomial heap	$O(\log N)$	$O(\log N)$	$O(\log N)$
		O(1) amortized	

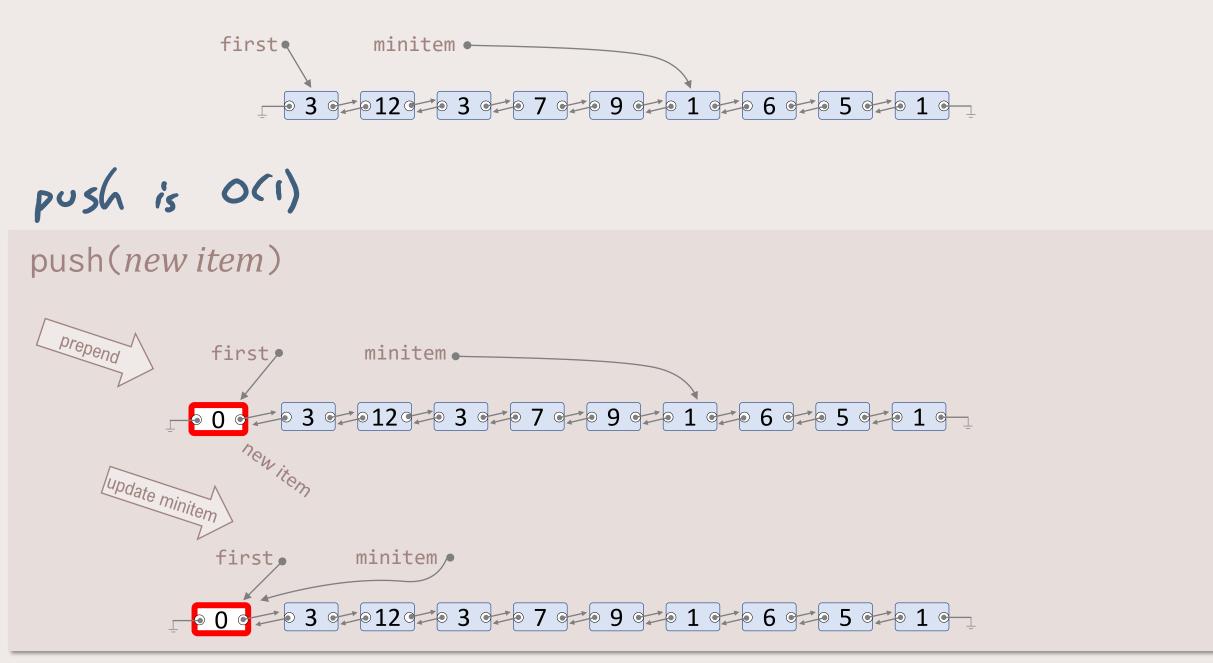
Dijkstra's algorithm makes O(E) calls to push / decreaskey, and only O(V) calls to popmin.

QUESTION1. Can we make both push and decreasekey be O(1)?

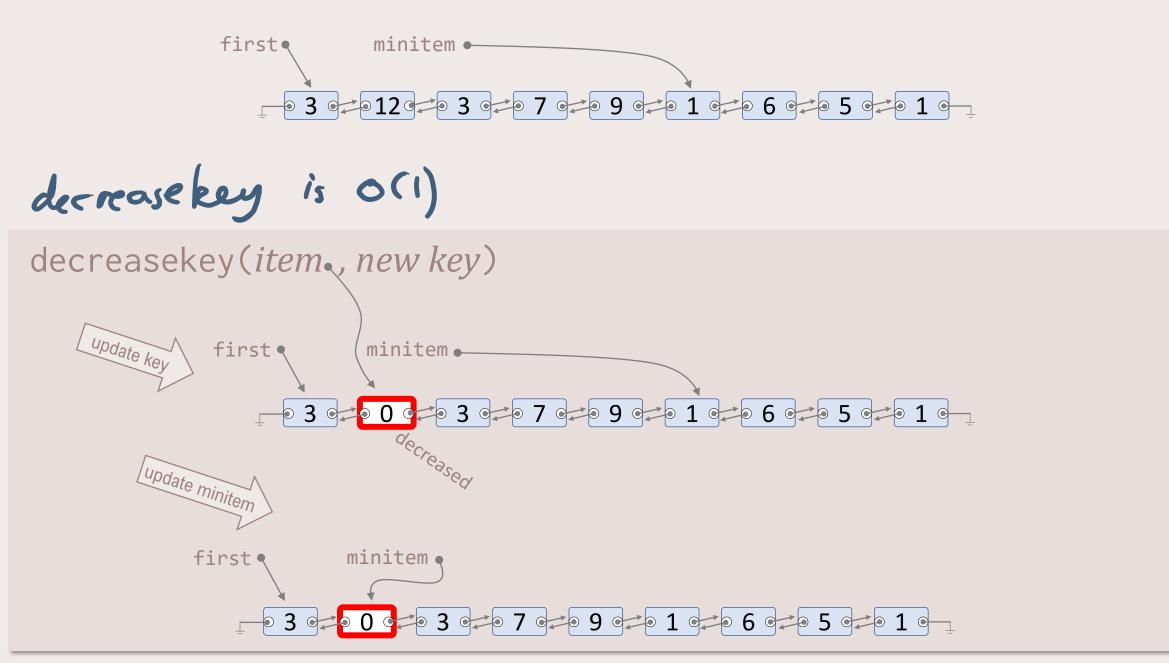
QUESTION2. What's the binomial heap's secret sauce that lets it have O(1) push?

Floordrobe.

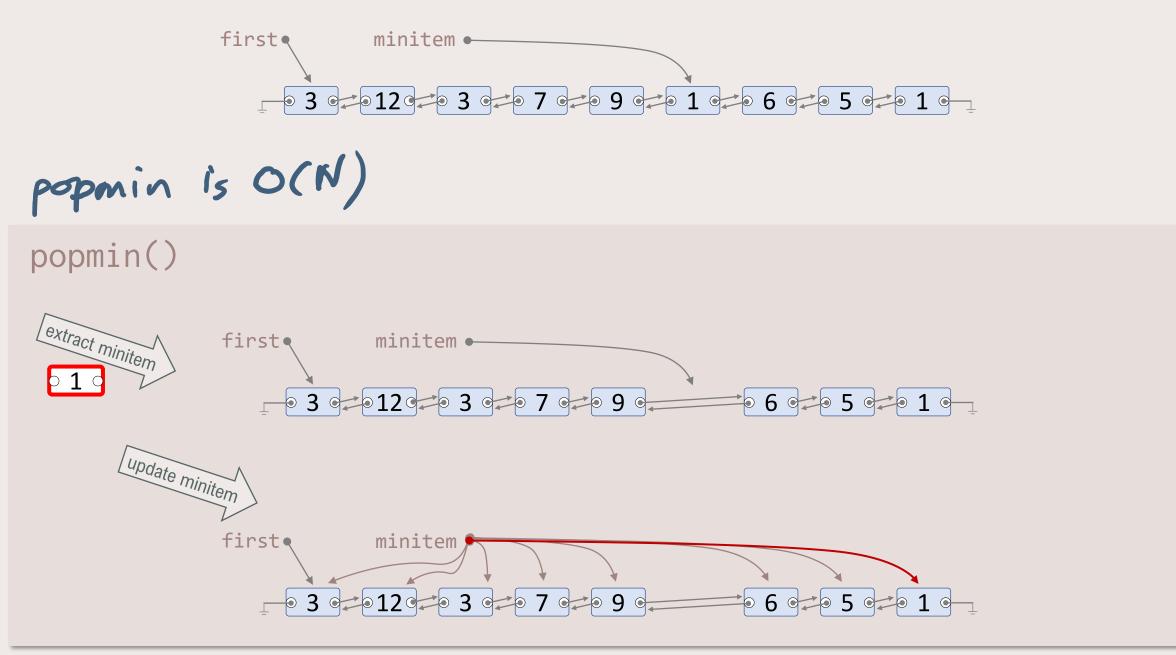
Linked-list priority queue



Linked-list priority queue



Linked-list priority queue



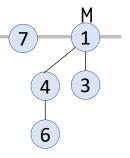
	popmin	push	decreasekey	
binary heap	$O(\log N)$	$O(\log N)^{\bullet}$	$O(\log N)$	batch-push is $O(l$
binomial heap	$O(\log N)$	$\mathit{O}(1)$ amort	$O(\log N)$	
linked list	O(N)	0(1)	0(1)	
Fibonacci heap	$O(\log N)$ amort	$\mathit{O}(1)$ amort	$\mathit{O}(1)$ amort	

Design strategy for the Fibonacci heap:

- Give your data enough structure that you only need to touch a little bit of it
- Be lazy: let mess accumulate
- Do cleanup in batches

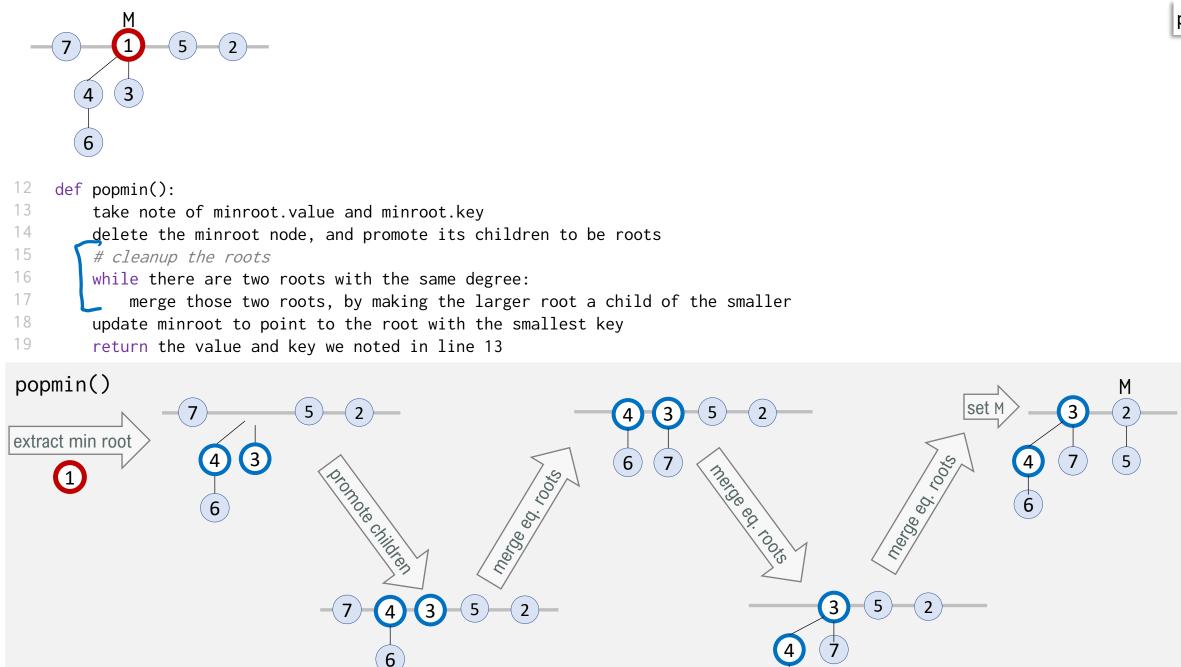
SECTION 7.6 The Fibonacci Heap

minroot



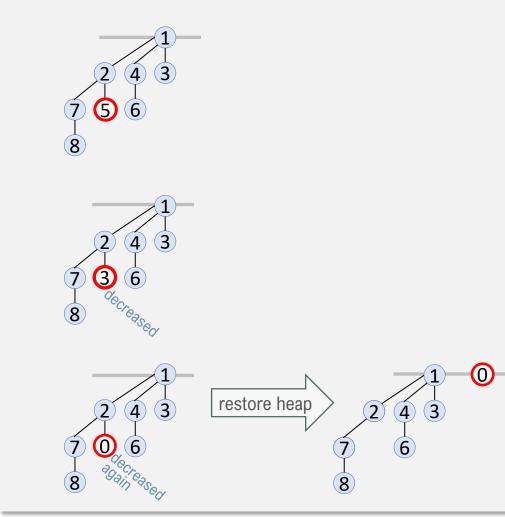
- store a list of trees, each a heap
- trees can have any shape
- keep track of the minroot

```
1 # Maintain a list of heaps (i.e. store a pointer to the root of each heap)
2 roots = []
3
4 # Maintain a pointer to the smallest root
5 minroot = None
6
7 def push(Value v, Key k):
8 create a new heap h consisting of a single item (v,k)
9 add h to the list of roots
10 update minroot if minroot is None or k < minroot.key</pre>
```

6

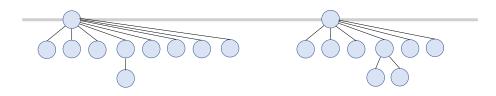
decreasekey(item, new key)

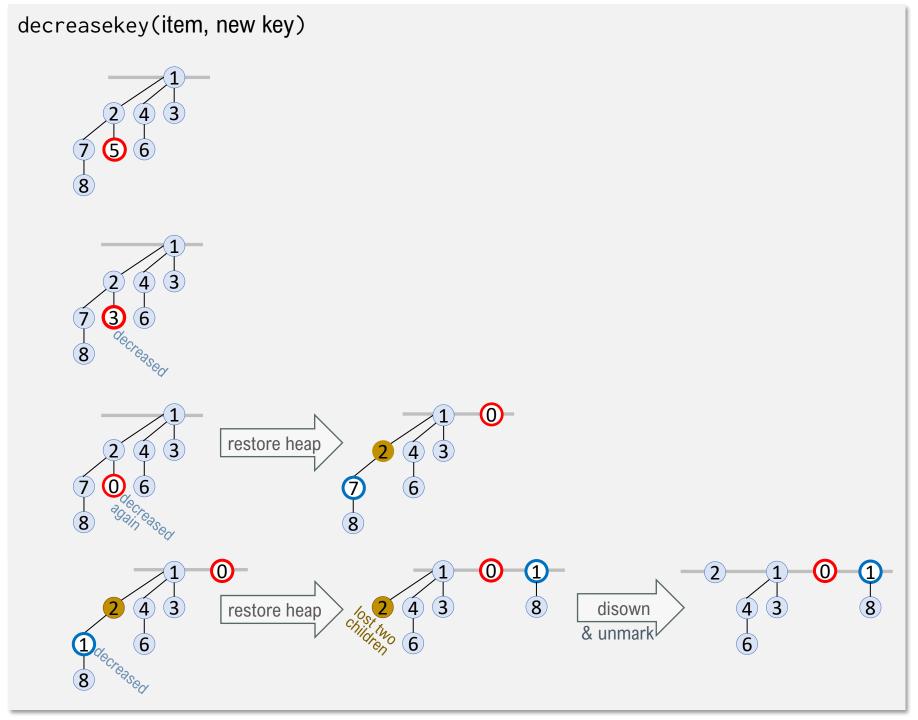


LAZY STRATEGY

Dump heap-violating nodes into the root list, to be cleaned up by the next popmin()

... but we might end up with a heap with
wide shallow trees, which will make
popmin() slow





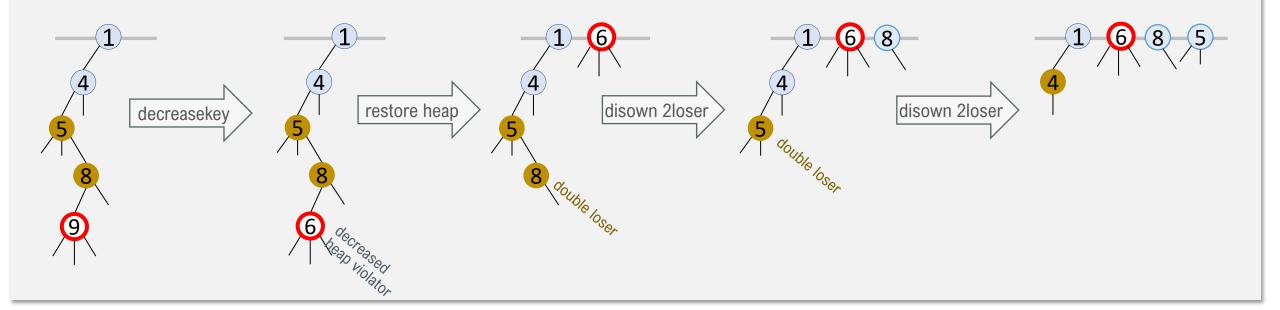
Rule 1. Lose one child, and you're marked a LOSER

Rule 2. Lose two children, and you're dumped into the root list

page 67

```
30
    # Every node will store a flag, n.loser = True / False
31
32
    def decreasekey(v, k'):
33
        let n be the node where this value is stored
34
        n.\text{key} = k'
35
        if n violates the heap condition:
36
             repeat:
37
                 p = n.parent
38
                 remove n from p.children
39
                 insert n into the list of roots, updating minroot if necessary
40
                 n.loser = False
41
                 n = p
42
             until p.loser == False
43
             if p is not a root:
44
                 p.loser = True
45
```

⁴⁶ # Modify popmin so that when we promote minroot's children, we erase any loser flags



Sometimes it pays to let mess build up

Your parents want lots of grandchildren*

* and they'll disown you if you don't have enough

SECTION 7.8 Amortized analysis of the Fibonacci Heap

Take-away: this is an elegant use of potential functions to account for *two separate* unbounded-cost operations.

FIBONACCI HEAP COMPLEXITY ANALYSIS

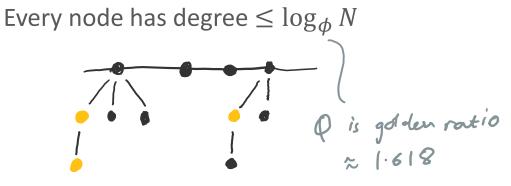
COMPLEXITY ANALYSIS

In a Fibonacci heap with N items, using the potential function

 $\Phi = \text{num.roots} + 2 \times \text{num.losers},$

- push() has amortized cost O(1)
- decreasekey() has amortized cost O(1)
- popmin() has amortized cost O(log N)

SHAPE THEOREM



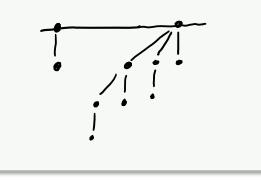
BINOMIAL HEAP COMPLEXITY ANALYSIS

COMPLEXITY ANALYSIS

In a binomial heap with N items

- push() is O(log N)
- decreasekey() is O(log N)
- popmin() is O(log N)

SHAPE THEOREM The largest tree has degree $\leq \log_2 N$



$\Phi = \text{num.roots} + 2 \times \text{num.losers}$

7 def push(Value v, Key k):

8

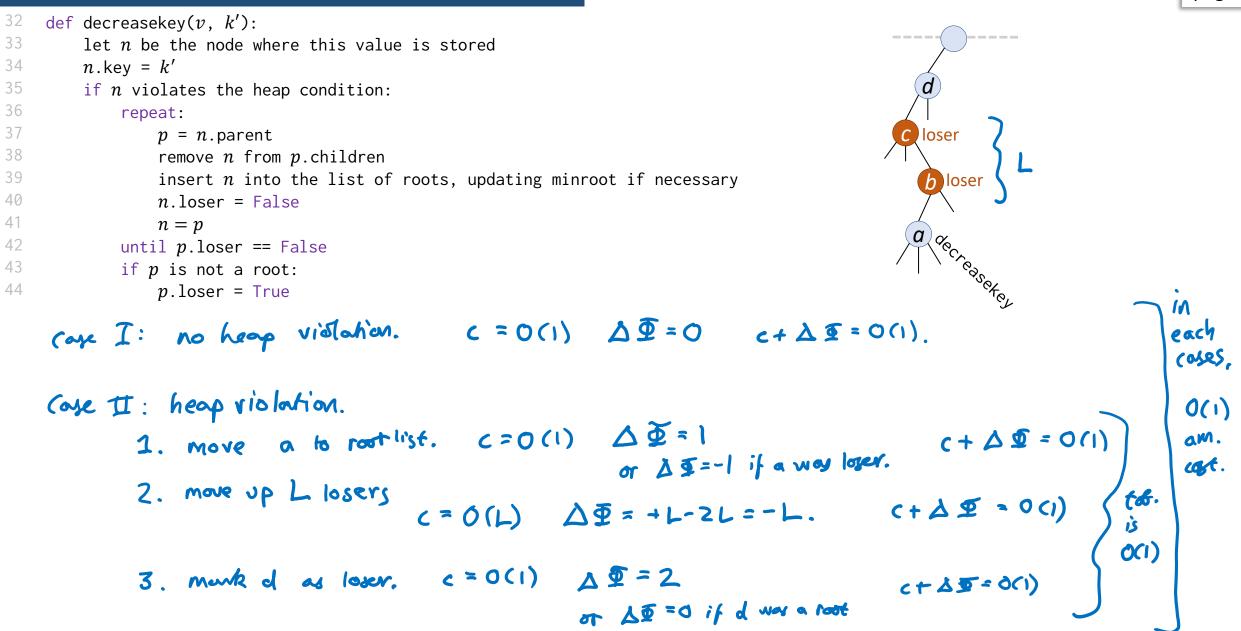
10

create a new heap h consisting of a single item (v,k)

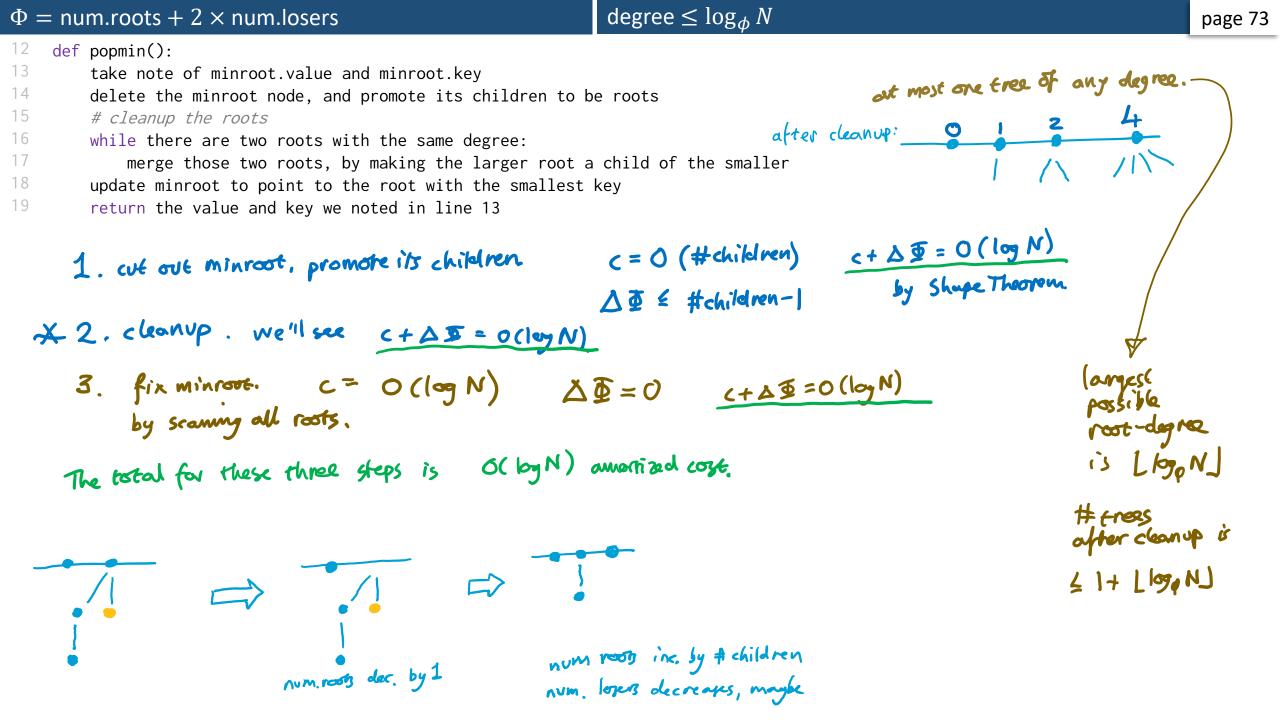
9 add h to the list of roots

update minroot if minroot is None or k < minroot.key

Φ = num.roots + 2 × num.losers



page 73



$\Phi = \text{num.roots} + 2 \times \text{num.losers}$

degree $\leq \log_{\phi} N$

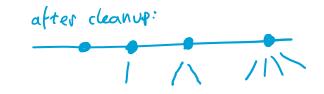
12 def popmin():

14

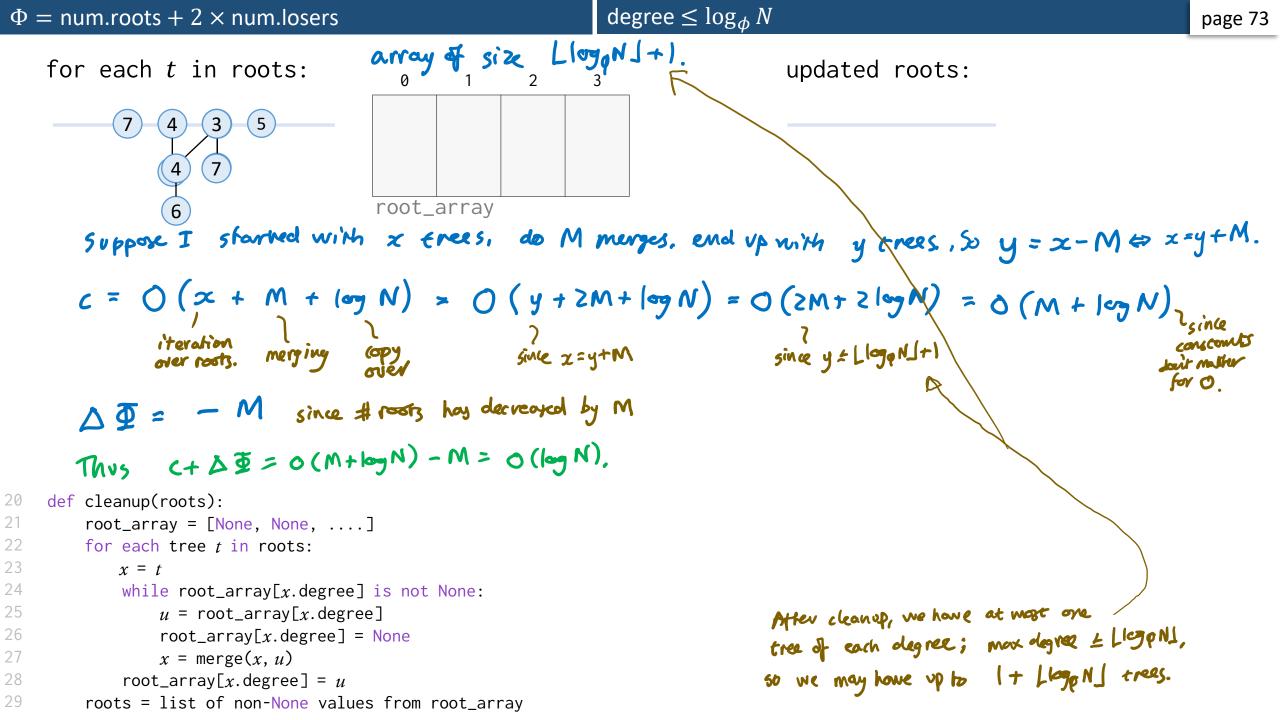
16

17

- 13 take note of minroot.value and minroot.key
 - delete the minroot node, and promote its children to be roots
- 15 *# cleanup the roots*
 - while there are two roots with the same degree:
 - merge those two roots, by making the larger root a child of the smaller
- ¹⁸ update minroot to point to the root with the smallest key
- 19 return the value and key we noted in line 13



```
20
    def cleanup(roots):
21
         root_array = [None, None, ....]
22
        for each tree t in roots:
23
            x = t
24
            while root_array[x.degree] is not None:
25
                 u = root_array[x.degree]
26
                 root_array[x.degree] = None
27
                 x = merge(x, u)
28
             root_array[x.degree] = u
29
         roots = list of non-None values from root_array
```



 $\Phi = \text{num.roots} + 2 \times \text{num.losers}$ pays in advance for these "uncontrolled" iterations page 73

