
floordrobe, noun. A heap of clothing left on the floor of a room.
In computer science: the most perfect design for an advanced data 
structure.
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popmin push decreasekey

binary heap 𝑂(log𝑁) 𝑂(log𝑁) 𝑂(log𝑁)

binomial heap 𝑂(log𝑁) 𝑂(log𝑁) 𝑂(log𝑁)

𝑂(1) amortized

Pushing 𝑁 items is 𝑂(𝑁 log𝑁) — but if 
we’re clever we can create a binary heap 
of 𝑁 items in 𝑂(𝑁).

QUESTION1. Can we make both push and 
decreasekey be 𝑂(1)?

Dijkstra’s algorithm makes 𝑂(𝐸) calls to push / 
decreaskey, and only 𝑂 𝑉  calls to popmin.

QUESTION2. What’s the binomial heap’s 
secret sauce that lets it have 𝑂(1) push?



popmin push decreasekey

binary heap 𝑂(log𝑁) 𝑂(log𝑁) 𝑂(log𝑁)

binomial heap 𝑂(log𝑁) 𝑂(log𝑁) 𝑂(log𝑁)

𝑂(1) amortized

Pushing 𝑁 items is 𝑂(𝑁 log𝑁) — but if 
we’re clever we can create a binary heap 
of 𝑁 items in 𝑂(𝑁).

# Fast binary-heapification

for i in (⌊N/2⌋-1)..0:
  # assert: trees rooted at (i+1)..N are heaps

  re-heapify the tree rooted at x[i]
  by bubbling down

▪ When we reheapify from depth 𝑑 it takes 
ℎ − 𝑑 work to bubble down, and there are 
≤ 2𝑑 items that need this work.

▪ There are more items at greater depths, and 
it’s these items that take the least work.

▪ Total work is  σ𝑑=0
ℎ 2𝑑 ℎ − 𝑑

chapter 2.10

≤ 2 × 2ℎ = 2𝑁 [printed notes chapter 2.10]
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𝑖

0 1 2 3 4 5 6 7 8 9 10
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1 2

3 4 5 6

7 8 9 10

11



popmin push decreasekey

binary heap 𝑂(log𝑁) 𝑂(log𝑁) 𝑂(log𝑁)

binomial heap 𝑂(log𝑁) 𝑂(log𝑁) 𝑂(log𝑁)

𝑂(1) amortized

Pushing 𝑁 items is 𝑂(𝑁 log𝑁) — but if 
we’re clever we can create a binary heap 
of 𝑁 items in 𝑂(𝑁).

SECRET SAUCE. Design your data structure so 
that most of the time it’s sufficient to only touch 
a small bit of it.

▪ The binary heap’s fast-heapification achieves 
this through doing its work in a batch (rather 
than push by push)

▪ The binomial heap achieves this by splitting 
up the heap into semi-isolatable trees

4

3

7

8



popmin push decreasekey

binary heap 𝑂(log𝑁) 𝑂(log𝑁) 𝑂(log𝑁)

binomial heap 𝑂(log𝑁) 𝑂(log𝑁) 𝑂(log𝑁)

𝑂(1) amortized

Pushing 𝑁 items is 𝑂(𝑁 log𝑁) — but if 
we’re clever we can create a binary heap 
of 𝑁 items in 𝑂(𝑁).

QUESTION1. Can we make both push and 
decreasekey be 𝑂(1)?

Dijkstra’s algorithm makes 𝑂(𝐸) calls to push / 
decreaskey, and only 𝑂 𝑉  calls to popmin.

QUESTION2. What’s the binomial heap’s 
secret sauce that lets it have 𝑂(1) push?



push(new item)

3 12 3 7 9 1 6 5 1

first minitem

0 3 12 3 7 9 1 6 5 1

first minitem

0 3 12 3 7 9 1 6 5 1

first minitem

Linked-list priority queue page 64



decreasekey(item  , new key)

3 12 3 7 9 1 6 5 1

first minitem

Linked-list priority queue

3 0 3 7 9 1 6 5 1

first minitem

3 0 3 7 9 1 6 5 1

first minitem

page 64



popmin()

3 12 3 7 9 1 6 5 1

first minitem

Linked-list priority queue

3 12 3 7 9 6 5 1

first minitem

3 12 3 7 9 6 5 1

first minitem

1

page 64



popmin push decreasekey

binary heap 𝑂(log𝑁) 𝑂(log𝑁) 𝑂(log𝑁)

binomial heap 𝑂(log𝑁) 𝑂(1) amort 𝑂(log𝑁)

linked list 𝑂(𝑁) 𝑂(1) 𝑂(1)

Design strategy for the Fibonacci heap:

❖ Give your data enough structure that 
you only need to touch a little bit of it

❖ Be lazy: let mess accumulate

❖ Do cleanup in batches

Fibonacci heap 𝑂(log𝑁) amort 𝑂(1) amort 𝑂(1) amort

page 62

batch-push is 𝑂(𝑁)



SECTION 7.6

The Fibonacci Heap



push(new item)

7 1

34

6

5 7 1

34

6

5 2

M

7 1

34

6

M M

minroot

▪ store a list of trees, each a heap
▪ trees can have any shape
▪ keep track of the minroot

1
2
3
4
5
6
7
8
9

10

# Maintain a list of heaps (i.e. store a pointer to the root of each heap)
roots = []

# Maintain a pointer to the smallest root
minroot = None

def push(Value 𝑣, Key 𝑘):
create a new heap ℎ consisting of a single item (𝑣,𝑘)
add ℎ to the list of roots
update minroot if minroot is None or 𝑘 < minroot.key

add to list add to list

page 65



popmin()

7 1

34

6

5 2

7

6

5 2

4

6

5 2

5 2

7

3

4

6

7

3

4

6

5

2

M

M

extract min root
34

7 3

4

6 7

3

5 2

1

1

set M

12
13
14
15
16
17
18
19

def popmin():
take note of minroot.value and minroot.key
delete the minroot node, and promote its children to be roots
# cleanup the roots
while there are two roots with the same degree:

merge those two roots, by making the larger root a child of the smaller
update minroot to point to the root with the smallest key
return the value and key we noted in line 13

page 65-66



decreasekey(item, new key)

1

34

6

2

57

8

1

34

6

2

7

8

1

34

67

8

7

2

1

34

6

0

8

5

3

2

0

restore heap

LAZY STRATEGY
Dump heap-violating nodes into the 
root list, to be cleaned up by the next 
popmin()

... but we might end up with a heap with 
wide shallow trees, which will make 
popmin() slow

page 67



decreasekey(item, new key)decreasekey(item, new key)

1

34

6

2

57

8

1

34

6

2

7

8

1

34

67

8

Rule 1. Lose one child, and 
you’re marked a LOSER

Rule 2. Lose two children, 
and you’re dumped into 
the root list

7

1

34

6

0

8

5

3

2

0

restore heap

2

1

34

6

0

8

7

1

restore heap 2

1

34

6

0 1

8 disown

1

34

6

0 1

8

2

& unmark

2

page 67
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1

5

8

4

1

5

8

4

61 58

4

61

5

4

61 8

30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

# Every node will store a flag, n.loser = True / False

def decreasekey(𝑣, 𝑘′):
let 𝑛 be the node where this value is stored
𝑛.key = 𝑘′

if 𝑛 violates the heap condition:
repeat:

𝑝 = 𝑛.parent
remove 𝑛 from 𝑝.children
insert 𝑛 into the list of roots, updating minroot if necessary
𝑛.loser = False
𝑛 = 𝑝

until 𝑝.loser == False
if 𝑝 is not a root:

𝑝.loser = True

# Modify popmin so that when we promote minroot’s children, we erase any loser flags

decreasekey restore heap disown 2loser disown 2loser

9 6

8

5

page 68



Sometimes it pays 
to let mess build up

Your parents want 
lots of grandchildren* 
* and they’ll disown you if 
you don’t have enough



SECTION 7.8

Amortized analysis of 
the Fibonacci Heap

Take-away: this is an elegant use of 
potential functions to account for two 
separate unbounded-cost operations.



SHAPE THEOREM

Every node has degree ≤ log𝜙𝑁

COMPLEXITY ANALYSIS

In a Fibonacci heap with 𝑁 items,
using the potential function

Φ = num.roots + 2 × num.losers,

▪ push() has amortized cost 𝑂 1

▪ decreasekey() has amortized cost 𝑂(1)

▪ popmin() has amortized cost 𝑂 log𝑁

FIBONACCI HEAP 
COMPLEXITY ANALYSIS

SHAPE THEOREM
The largest tree has degree ≤ log2𝑁

COMPLEXITY ANALYSIS

In a binomial heap with 𝑁 items

▪ push() is 𝑂 log𝑁

▪ decreasekey() is 𝑂 log𝑁

▪ popmin() is 𝑂 log𝑁

BINOMIAL HEAP 
COMPLEXITY ANALYSIS



7
8
9

10

def push(Value 𝑣, Key 𝑘):
create a new heap ℎ consisting of a single item (𝑣,𝑘)
add ℎ to the list of roots
update minroot if minroot is None or 𝑘 < minroot.key

Φ = num.roots + 2 × num.losers page 73



32
33
34
35
36
37
38
39
40
41
42
43
44

def decreasekey(𝑣, 𝑘′):
let 𝑛 be the node where this value is stored
𝑛.key = 𝑘′

if 𝑛 violates the heap condition:
repeat:

𝑝 = 𝑛.parent
remove 𝑛 from 𝑝.children
insert 𝑛 into the list of roots, updating minroot if necessary
𝑛.loser = False
𝑛 = 𝑝

until 𝑝.loser == False
if 𝑝 is not a root:

𝑝.loser = True

d

a

c

b

loser

loser

Φ = num.roots + 2 × num.losers page 73



12
13
14
15
16
17
18
19

def popmin():
take note of minroot.value and minroot.key
delete the minroot node, and promote its children to be roots
# cleanup the roots
while there are two roots with the same degree:

merge those two roots, by making the larger root a child of the smaller
update minroot to point to the root with the smallest key
return the value and key we noted in line 13

Φ = num.roots + 2 × num.losers degree ≤ log𝜙𝑁 page 73



20
21
22
23
24
25
26
27
28
29

def cleanup(roots):
root_array = [None, None, ....]
for each tree t in roots:

x = t
while root_array[x.degree] is not None:

u = root_array[x.degree]
root_array[x.degree] = None
x = merge(x, u)

root_array[x.degree] = u

roots = list of non-None values from root_array

Φ = num.roots + 2 × num.losers degree ≤ log𝜙𝑁 page 73

12
13
14
15
16
17
18
19

def popmin():
take note of minroot.value and minroot.key
delete the minroot node, and promote its children to be roots
# cleanup the roots
while there are two roots with the same degree:

merge those two roots, by making the larger root a child of the smaller
update minroot to point to the root with the smallest key
return the value and key we noted in line 13



0 1 2 3

7 34

6

5

root_array

for each 𝑡 in roots:

7

3

4

6

7

3

updated roots:

20
21
22
23
24
25
26
27
28
29

def cleanup(roots):
root_array = [None, None, ....]
for each tree t in roots:

x = t
while root_array[x.degree] is not None:

u = root_array[x.degree]
root_array[x.degree] = None
x = merge(x, u)

root_array[x.degree] = u

roots = list of non-None values from root_array

Φ = num.roots + 2 × num.losers degree ≤ log𝜙𝑁 page 73



Φ = num.roots + 2 × num.losers

popmin

decreasekey

page 73
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