floordrobe, noun. A heap of clothing left on the floor of a room. In computer science: the most perfect design for an advanced data structure.

	popmin	push	decreasekey
binary heap	$O(\log N)$	$O(\log N)$	$O(\log N)$
binomial heap	$O(\log N)$	$O(\log N)$	$O(\log N)$
		$O(1)$ amortized	

Dijkstra's algorithm makes $O(E)$ calls to push / decreaskey, and only $O(V)$ calls to popmin.

QUESTION1. Can we make both push and decreasekey be $O(1)$?

QUESTION2. What's the binomial heap's secret sauce that lets it have $O(1)$ push?

- When we reheapify from depth d it takes $h-d$ work to bubble down, and there are $\leq 2^{d}$ items that need this work.
- There are more items at greater depths, and it's these items that take the least work.
- Total work is $\sum_{d=0}^{h} 2^{d}(h-d)$

$$
\leq 2 \times 2^{h}=2 N \text { [printed notes chapter 2.10] }
$$

Pushing N items is $O(N \log N)$ - but if we're clever we can create a binary heap of N items in $O(N)$.

	popmin	push	decreasekey
binary heap	$O(\log N)$	$O(\log N)$	$O(\log N)$
binomial heap	$O(\log N)$	$O(\log N)$	$O(\log N)$
		$O(1)$ amortized	

SECRET SAUCE. Design your data structure so that most of the time it's sufficient to only touch a small bit of it.

- The binary heap's fast-heapification achieves this through doing its work in a batch (rather than push by push)
- The binomial heap achieves this by splitting up the heap into semi-isolatable trees

Pushing N items is $O(N \log N)$ - but if we're clever we can create a binary heap of N items in $O(N)$.

	popmin	push	decreasekey
binary heap	$O(\log N)$	$O(\log N)$	$O(\log N)$
binomial heap	$O(\log N)$	$O(\log N)$	$O(\log N)$
		$O(1)$ amortized	

Dijkstra's algorithm makes $O(E)$ calls to push / decreaskey, and only $O(V)$ calls to popmin.

QUESTION1. Can we make both push and decreasekey be $O(1)$?

QUESTION2. What's the binomial heap's secret sauce that lets it have $O(1)$ push?
floordrobe.

push is o(1)

push(new item)

derreasekey is o(1)

decreasekey (item, new key)

popmin is $O(N)$

popmin()

	popmin	push	decreasekey
binary heap	$O(\log N)$	$O(\log N)^{2}$	$O(\log N)$

Design strategy for the Fibonacci heap:

* Give your data enough structure that you only need to touch a little bit of it
* Be lazy: let mess accumulate
* Do cleanup in batches

SECTION 7.6

The Fibonacci Heap

- store a list of trees, each a heap
- trees can have any shape
- keep track of the minroot

```
# Maintain a list of heaps (i.e. store a pointer to the root of each heap)
roots = []
# Maintain a pointer to the smallest root
minroot = None
def push(Value v, Key k):
    create a new heap h consisting of a single item ( v,k)
        add h to the list of roots
        update minroot if minroot is None or k< minroot.key
        1
```


page 65-66
def popmin():
take note of minroot.value and minroot.key
delete the minroot node, and promote its children to be roots
\# cleanup the roots
while there are two roots with the same degree:
merge those two roots, by making the larger root a child of the smaller
update minroot to point to the root with the smallest key
return the value and key we noted in line 13
popmin()
extract min root

decreasekey(item, new key)

LAZY STRATEGY

Dump heap-violating nodes into the root list, to be cleaned up by the next popmin()
... but we might end up with a heap with wide shallow trees, which will make popmin() slow

Rule 1. Lose one child, and you're marked a LOSER

Rule 2. Lose two children, and you're dumped into the root list

def decreasekey $\left(v, k^{\prime}\right):$

let n be the node where this value is stored
n. key $=k^{\prime}$
if n violates the heap condition:
repeat:
$p=n$.parent
remove n from p.children
insert n into the list of roots, updating minroot if necessary
n. loser $=$ False
$n=p$
until p.loser == False
if p is not a root:
p. loser $=$ True
\# Modify popmin so that when we promote minroot's children, we erase any loser flags

SECTION 7.8

Amortized analysis of the Fibonacci Heap

Take-away: this is an elegant use of potential functions to account for two separate unbounded-cost operations.

FIBONACCI HEAP
 COMPLEXITY ANALYSIS

COMPLEXITY ANALYSIS

In a Fibonacci heap with N items, using the potential function
$\Phi=$ num.roots $+2 \times$ num.losers,

- push() has amortized cost O (1)
- decreasekey () has amortized cost O (1)
- popmin() has amortized cost $O(\log N)$

SHAPE THEOREM

Every node has degree $\leq \log _{\phi} N$

BINOMIAL HEAP
 COMPIEXITY ANAIYSIS

COMPLEXITY ANALYSIS

In a binomial heap with N items

- push() is $O(\log N)$
- decreasekey () is $O(\log N)$
- popmin() is $O(\log N)$

SHAPE THEOREM

The largest tree has degree $\leq \log _{2} N$

$$
\Phi=\text { num.roots }+2 \times \text { num.losers }
$$

```
def push(Value \(v\), Key \(k\) ):
create a new heap \(h\) consisting of a single item ( \(v, k\) )
add \(h\) to the list of roots
update minroot if minroot is None or \(k\) < minroot. key
```

$$
c=0(1) \quad \Delta \Phi=1 \quad c^{\prime}=c+\Delta \Phi=O(1)
$$

def decreasekey (v, k^{\prime}):
let n be the node where this value is stored
n. key $=k^{\prime}$
if n violates the heap condition:
repeat:
$p=n$.parent
remove n from p.children
insert n into the list of roots, updating minroot if necessary
n. loser = False
$n=p$
until p.loser == False
if p is not a root:

$$
p . \text { loser }=\text { True }
$$

case I: no heap vistation. $c=O(1) \quad \Delta \Phi=0 \quad c+\Delta \Phi=0(1)$.
Case II: heap violation.

1. move a to root list. $c=0(1) \quad \Delta \Phi=1$
2. move up L losers
or $\Delta \Phi=-1$ if a was loper.
$c+\Delta \Phi=O(1)$

$$
c=O(L) \quad \Delta \Phi=+L-2 L=-L . \quad c+\Delta \Phi=0(1)
$$

3. monk d as loser. $c=0(1) \quad \Delta \Phi=2$
$c+\Delta 5=0(1)$
or $\Delta \Phi=0$ if d was a root
def popmin():
take note of minroot.value and minroot.key
delete the minroot node, and promote its children to be roots
at most one tree of any degree.
\# cleanup the roots
while there are two roots with the same degree: after cleanup:

update minroot to point to the root with the smallest key
return the value and key we noted in line 13
4. cut out minroot, promote its children

$X 2$. cleanup. weill see $c+\Delta I=0(\log N)$
5. fix minroot. $c=O(\log N) \quad \Delta \Phi=0 \quad c+\Delta \Phi=O(\log N)$ largest possible by scamming all roots. root-degree
The total for these three steps is $O(\operatorname{boy} N)$ amortized cost. is $\left\lfloor\log _{p} N\right\rfloor$

Heres after cleanup is

$$
\leq 1+\left\lfloor\log _{\varphi} N\right\rfloor
$$

numb roots inc. by $\#$ children num. levers decreaks, maybe

```
\Phi = \text { num.roots + 2 < num.losers}
```

degree $\leq \log _{\phi} N$
def popmin():
take note of minroot.value and minroot.key delete the minroot node, and promote its children to be roots
\# cleanup the roots
while there are two roots with the same degree:
merge those two roots, by making the larger root a child of the smaller update minroot to point to the root with the smallest key
return the value and key we noted in line 13
def cleanup(roots):

```
    root_array = [None, None, ....]
```

 for each tree \(t\) in roots:
 \(x=t\)
 while root_array[x.degree] is not None:
 \(u=\) root_array[x.degree]
 root_array[x.degree] = None
 \(x=\operatorname{merge}(x, u)\)
 root_array[x.degree] \(=u\)
 roots \(=\) list of non-None values from root_array
 $\Phi=$ num.roots $+2 \times$ num. losers
for each t in roots:
$\underset{0}{\operatorname{array}}$ of size $\left\lfloor\log _{3} N\right\rfloor+1$. updated roots:

root_array
Suppose I starved with x trees, do M merges. end up with y tres. So $y=x-M \Leftrightarrow x=y+M$.

Thus $c+\Delta \Phi=O(M+\log N)-M=O(\log N)$.
def cleanup(roots):
root_array = [None, None,]]
for each tree t in roots:

$$
x=t
$$

while root_array[x.degree] is not None:
$u=$ root_array[x.degree]
root_array[x.degree] = None
After cleanup, we have at most one
$x=\operatorname{merge}(x, u)$ tree of each degree; max degree \leq LlegpNd,
root_array[x.degree] $=u$ so we may howe up to $1+\lfloor$ bop $N\rfloor$ trees.
$\Phi=$ num.roots $+2 \times$ num.losers pays in advance for these "uncontrolled" irevations page 73
for each t in roots:

updated roots:

(6)

Suppose we stunt with x crees, do M menses, and end up with y trees.

def cleanup(roots):
root_array $=$ [None, None, empty array 4 size $\lfloor\lg p \mathrm{~N}\rfloor\rfloor+1$

each tree t in roots:
$x=t$
is not None:
$u=$ root_array[x. degree]
$x=$ merge (x, u)
roots $=$ list of non-None values from root_array
def decreasekey $\left(v, k^{\prime}\right)$:
let n be the node where this value is stored
$n \cdot$ key $=k^{\prime}$
if n violates the heap condition:
repeat:
$p=n$.parent
remove n from p.children
insert n into the list of roots, updating minroot if necessary n. loser $=$ False
$n=p$
n neil p.
until p. loser $=$ False
p. loser = True

CASE I: no heap violation
$c=O(1) \quad \Delta \Phi=0 \Rightarrow c+\Delta \Phi=O$)

CASE II: heap violation

1. more a to rootlist

$$
\begin{aligned}
& c \text { a to rootlist } \\
& c=O(1) \quad \Delta \Phi=1 \text { or } \Delta \Phi=1 \text { if a was loser } \Rightarrow c+\Delta \Phi=O(1)
\end{aligned}
$$

2. Move up L losers also
3. Mark $d \quad \infty$ a loser $\quad \Delta \Phi=2 \quad$ unless d is rows, $\quad \Delta \Phi=0 \quad c+\Delta \Phi=O(1)$
in both cases, total amortized cost is o(1)
popmin
had to do M merges
decreasekey
had to move
L nodes to root
