floordrobe, noun. A heap of clothing left on the floor of a room.

In computer science: the most perfect design for an advanced data
structure.

Pushing N itemsis O(N log N) — but if
we’re clever we can create a binary heap
of N itemsin O(N).

popmin push decreasekey

binary heap

binomial heap

O(logN) Of(logN) O(logN)
O(logN) O(log?) O(logN)

0(1) amortized

Dijkstra’s algorithm makes O (E) calls to push /
decreaskey, and only O(V) calls to popmin.

QUESTION1. Can we make both push and
decreasekey be 0(1)?

QUESTION2. What’s the binomial heap’s
secret sauce that lets it have O(1) push?

page 62

Pushing N items is O(N log N) — but if chapter 2.10
we’re clever we can create a binary heap
of N itemsin O(N).

popmin push decreasekey
. # Fast binary-heapification
binary heap O(logN) Of(logN) O(logN) For 1 inl C[N/2]-1)..0:
binomial heap O(logN) OW) O(logN) # assert: trees rooted at (i+1)..N are heaps

re-heapify the tree rooted at x[i]
by bubbling down

00000020000

9 10 11

0(1) amortized

= When we reheapify from depth d it takes

h — d workYo bubble down, and there are
< 2% items)that need this work.

» There are more items at greater depths, and
it’s these items that take the least work.

= Total workis Y:1_,2%(h — d)
<2x2ht=2N

Pushing N items is O(N log N) — but if
we’re clever we can create a binary heap
of N itemsin O(N).

popmin push decreasekey
binary heap O(logN) Of(logN) O(logN)
binomial heap O(logN) O(log?7) O(logN)

0(1) amortized

SECRET SAUCE. Design your data structure so
that most of the time it’s sufficient to only touch
a small bit of it.

= The binary heap’s fast-heapification achieves
this through doing its work in a batch (rather
than push by push)

= The binomial heap achieves this by splitting
up the heap into semi-isolatable trees

@
’I\ ’)T // |

{\{\I\

/|
/I\
"...

Pushing N itemsis O(N log N) — but if
we’re clever we can create a binary heap
of N itemsin O(N).

popmin push decreasekey

binary heap

binomial heap

O(logN) Of(logN) O(logN)
O(logN) O(log?) O(logN)

0(1) amortized

Dijkstra’s algorithm makes O (E) calls to push /
decreaskey, and only O(V) calls to popmin.

QUESTION1. Can we make both push and
decreasekey be 0(1)?

QUESTION2. What's the
secret sauce tha

mial heap
it have O(1) push?

‘F(BQPOUCJ/A-Q,

Linked-list priority queue pagece

N

P39=pl2dcp3 g 7P 9 ge l dp 6 9@ 5 e 1 9

fir‘st\ minitem e—

pu sh s oY)

push(new item)

fir7 minitem e— \‘

£ 0Fr39712370 3970 TP 9 9P 1 970 6 47 5 97¢ 1 9

bW

Ze
Up dal‘ e mi @/)7

£ 0F-r39mr12870 3 920 T 970 9 9P 1 920 6 470 5 92 1 o

Linked-list priority queue pagece

N

P39=pl2dcp3 g 7P 9 ge l dp 6 9@ 5 e 1 9

d‘(ma‘sekjg Is O(|)

decreasekey (item., new key)

first \ minitem e— \

£ 39-L0 b3 9-b7 - 0d-b 1 -b6d=h 5=k 14~

O,@Cf
y s
pO’a te @O/
m /] N /'Il e/T)

first \ mi}itﬂj

0390 Fb39=b7dbod=b19b 69k 54920 14—

fir‘st\ minitem e—

Linked-list priority queue pagece

N

P39=pl2dcp3 g 7P 9 ge l dp 6 9@ 5 e 1 9

fir‘st\ minitem e—

Fopml.n Is O("/)

popmin()

first minitem e—
rp397p1297p 3920 7 970 9 G——P 6 97R 5 4P 1 6

P39p123p3 g 7 P 9 G———P 6 9p 5 orp 1 9

page 62

popmin push @
d

binary heap O(logN) O(logN) O(logN) batch-push is O(N)
binomial heap O(logN) O(1) amort O(logN)
linked list O(N) 0(1) 0(1)

Fibonacci heap 0(10g N) amort 0(1) amort 0(1) amort

Design strategy for the Fibonacci heap:

¢ Give your data enough structure that
you only need to touch a little bit of it

** Be lazy: let mess accumulate

+** Do cleanup in batches

SECTION 7.6
The Fibonacci Heap

minroot page 65

M
@ //D = store a list of trees, each a heap

@D %\ = trees can have any shape
ﬁ/ = = keep track of the minroot
‘6
&

Maintain a 1ist of heaps (i.e. store a pointer to the root of each heap)
roots = []

Maintain a pointer to the smallest root
minroot = None

def push(Value v, Key k):
create a new heap h consisting of a single item (v,k)
add h to the list of roots
update minroot if minroot is None or k < minroot.key

A

push(new item) M M
IR 0 | 7100
add to Ilst> e e %4, add to list %é

-
/(
()

>

M . page 65-66

def popmin():
take note of minroot.value and minroot.key
elete the minroot node, and promote its children to be roots
cleanup the roots
while there are two roots with the same degree:
merge those two roots, by making the larger root a child of the smaller
update minroot to point to the root with the smallest key
return the value and key we noted in line 13

popmin()

extract min roc>

o,

decreasekey (item, new key)

7
®

restore heap 1{/

LAZY STRATEGY

Dump heap-violating nodes into the
root list, to be cleaned up by the next

popmin()

... but we might end up with a heap with
wide shallow trees, which will make

popmin() slow

/\
/41%\ OO0
J

)
NN NN N AN

&)
N

()

/\I\

M\
O/
(M
N\
M\
U/
N
~
N

U
NN

o=

page 67

decreasekey (item, new key) page 67

(? 6

. ()

(8/ %)9&@
4 Rule 1. Lose one child, and
D © you're marked a

/2/\//&;; restore heap

L1 ll: Rule 2. Lose two children,

S0 and you’re dumped into

®) % ‘8 .

& S ©/ the root list

w/\w (1\‘ @

P
\l\)
() —k

(83 disown >
& unmark

N
_

(?) 3 8
Q\S/

Every node will store a flag, n.loser = True / False page 68

def decreasekey(v, k'):
let n be the node where this value is stored

n.key = k'
if n violates the heap condition:
repeat:

p = n.parent
remove n from p.children
insert n into the list of roots, updating minroot if necessary
n.loser = False
n=p
until p.loser == False
if p is not a root:
p.loser = True

Modify popmin so that when we promote minroot’s children, we erase any loser flags

PR IR AR
@ @ disown 2loser

decreasekey >

%, A
%
[S
0
%, %
%
Ay
G) 2
%
/%
%

L 0@0'
/o /e

,5’, p

i “z-

f, 1 ;“f’ f :

.,l >

Sometimes it pays
to let mess build up

A
L1W4

= . ""\’”i

Your parents want
lots of grandchildren™

*and they’'ll disown you if
you don’t have enough

SECTION 7.8
Amortized analysis of

the Fibonacci Heap

Take-away: this is an elegant use of
potential functions to account for two
separate unbounded-cost operations.

FIBONACCI HEAP
COMPLEXITY ANALYSIS

COMPLEXITY ANALYSIS

In a Fibonacci heap with N items,
using the potential function
® = num.roots + 2 X num.losers,

= push() has amortized cost 0(1)
= decreasekey() has amortized cost 0(1)
= popmin() has amortized cost O(log N)

SHAPE THEOREM
Every node has degree < logy N

_+4a_p_z

AN

I ° l @ s jJ'(un f‘ad”lo

Py % [-6'?

BINOMIAL HEAP
COMPLEXITY ANALYSIS

COMPLEXITY ANALYSIS

In a binomial heap with N items
= push()is O(logN)

= decreasekey() is O(logN)
= popmin()is O(logN)

SHAPE THEOREM
The largest tree has degree < log, N

—— ——

7

e /“0!'

|

® = num.roots + 2 X num.losers page 73

def push(vValue v, Key k):
create a new heap h consisting of a single item (v,k)
add h to the list of roots
update minroot if minroot is None or k < minroot.key

am.co¥€
c= o) NS =] e+ AT =00)

(@)
1

® = num.roots + 2 X num.losers page 73

def decreasekey(v, k'):
let n be the node where this value is stored
n.key = k'
if n violates the heap condition:
repeat:
p = n.parent
remove n from p.children
insert n into the list of roots, updating minroot if necessary
n.loser = False
n=p
until p.loser == False
if p is not a root:
p.loser = True

N
Coae L: no kcaf Vidlahon, c=00) A2?:=0 e+ AT =00), jeac"l
C04RS,
(ose 1T : heop vielafon, o)
1. move o h retlist. ¢c=0() Ag= c+ A9 =-00) \ am.
Y or AT=-| if a wey lger. ¥t
. owR | \g .
e P s ¢c=0(L) AP=-L-2L="L. CtAL ~0q) g&
o)
3. Mmook o] ag loser, ¢=00) AFT=2 ct AT =30
o~ AT =0 if d wey a fost -.,‘

® = num.roots + 2 X num.losers degree < log¢ N page 73

def popmin():
take note of minroot.value and minroot.key
ony degree.

delete the minroot node, and promote its children to be roots oM met one €res 6[- J [_3
cleanup the roots 2

: |
while there are two roots with the same degree: affem cleanvp o

merge those two roots, by making the larger root a child of the smaller I //\\ ‘/,\C\\

update minroot to point to the root with the smallest key
return the value and key we noted in line 13

1. et aut minrost, promete ifs chilelren =0 (#ciklren) 4+ AF:=0(leg M)
AT € fhchidren—| by Shupe Theoroo
X- 2. clionvp . we'llser ¢+ AT = ocley)
5. fumwwew > OUgN) AB=0 coaizolgW oy
Ly Sfdmy ’u "GO"'S\ M#&
Moo tutod for these three gheps 15 OClyN) awedizd cope, ‘s Liog,NJ
ia
o omwdf &
/| — /| = . L 14 LlgeN
L [
O! 0‘ AUM 100 e, .‘] $ child ren

by 1
num.rcs dlec. by aum_ e olecreayes, M-y‘c

® = num.roots + 2 X num.losers degree < logy N page 73

def popmin():
take note of minroot.value and minroot.key
delete the minroot node, and promote its children to be roots

cleanup the roots a(few cleanvg:
while there are two roots with the same degree: —o—¢—0—
merge those two roots, by making the larger root a child of the smaller I //\\ ,/’\C\\

update minroot to point to the root with the smallest key
return the value and key we noted in line 13

def cleanup(roots):

root_array = [None, None,]
for each tree ¢ in roots:
x =1

while root_array[x.degree] is not None:
u = root_array[x.degree]
root_array[x.degree] = None
x = merge(x, u)
root_array[x.degree] = u
roots = list of non-None values from root_array

= num.roots + 2 X num.losers

for each t in roots:

OROSORO,
OO

G root_array

degree < logy N page 73

'2%e LlogNd+)
a.rguy *1 S'kz 0339

updated roots:

SyPPcM.I sforted Wiy, x €rees, do M uvyes, emel VP vy y rees , y:x"M@ "‘f]"'M'

c= O(x+ M+yN) » O(y12mtlgn) =0 (mr2ly

A Y
b T fote, 22N\
ATz — M gine sy hoy decreoya by ™

def cleanup(roots):
root_array = [None, None,]
for each tree ¢t in roots:
x =1

while root_array[x.degree] is not None:
u = root_array[x.degree]
root_array[x.degree] = None
x = merge(x, u)
root_array[x.degree] = u
roots = list of non-None values from root_array

s(n@

Pev cleancp, we howe ot wat ore
tree & codh clygrer; Mo oleqvel £ [legeN],
0 wWe may howe VP k> [+ LloggN | €ress.

N - " ' page 73
® = num.roots + 2 X num.losers poys m advane for Ehege oncontrdUled Mrevasti ol

for each t in roots:

BGROSORO);
4) (7

(8

root_array

Suppoie we

cz O(x + M 2 "_’}”} -_\Q(3+2m+f?”)

. = x= P wh
prowgs o pdege

gk ;‘v‘.ﬁ

-M
e puea. Feell

.

o A

da b
praarnd
i

ot Ve woge slperzorl

roch we
prans

P
def cleanup(roots):
root_array = [Mane, Mane,]
for each tree r in roots:
x =t
while root_array[x.degree] is
u = root_arraylx. degree]
root_array[x. degree] = Mone
x = mergelx, w)
root_array[x.degres] = a
roots = list of nom-None values from root_array

-— llﬂf‘] "'.-J ‘ s

not Mone:

def decreasekey(w, k'):
let m be the node where this value is stored
n.key = k'
if n violates the heap condition:
repeat:
B = n.parent
remove n from p.children

insert n into the list of roots, updating minroot if necessary
n.laser = False
n=p

until p.loser == False

if p is mot a root:
p.loser = True

CasE i ho henp Violation

¢z 0f0 AgE =0 = c+aF=o0q)
case L her violomon
rereelist o o
i W“c -ao:; Ag=1 ar A%l awar feser S
2 Movg up L leten also
c=oly AF-+L-2L:-L =
2. Mok od e o brr unless d i rns, N
c = aly) AZ =1 Ag=0

gewvt with = creas oo pA aainer uulcml\p iy JM:.J

L lypni + |

updated roots:

popmin
had f oa
M merges

otim+ zi?h‘) - o(MHgNJ

4 L I(:mi\.'f—l

A

awn o=k LS
co AT = O(m+ Ign) = M

- O(lg”)

decreasekey

had to move
' L rodes ¢€o (oot

in both

cages

ct 65- O(I‘ tﬂ(‘.‘ﬁi
atnatize:

e+ AT = O i s
o)

cr AT = OO

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24

