
floordrobe, noun. A heap of clothing left on the floor of a room.
In computer science: the most perfect design for an advanced data
structure.

page 62

popmin push decreasekey

binary heap 𝑂(log𝑁) 𝑂(log𝑁) 𝑂(log𝑁)

binomial heap 𝑂(log𝑁) 𝑂(log𝑁) 𝑂(log𝑁)

𝑂(1) amortized

Pushing 𝑁 items is 𝑂(𝑁 log𝑁) — but if
we’re clever we can create a binary heap
of 𝑁 items in 𝑂(𝑁).

QUESTION1. Can we make both push and
decreasekey be 𝑂(1)?

Dijkstra’s algorithm makes 𝑂(𝐸) calls to push /
decreaskey, and only 𝑂 𝑉 calls to popmin.

QUESTION2. What’s the binomial heap’s
secret sauce that lets it have 𝑂(1) push?

popmin push decreasekey

binary heap 𝑂(log𝑁) 𝑂(log𝑁) 𝑂(log𝑁)

binomial heap 𝑂(log𝑁) 𝑂(log𝑁) 𝑂(log𝑁)

𝑂(1) amortized

Pushing 𝑁 items is 𝑂(𝑁 log𝑁) — but if
we’re clever we can create a binary heap
of 𝑁 items in 𝑂(𝑁).

Fast binary-heapification

for i in (⌊N/2⌋-1)..0:
 # assert: trees rooted at (i+1)..N are heaps

 re-heapify the tree rooted at x[i]
 by bubbling down

▪ When we reheapify from depth 𝑑 it takes
ℎ − 𝑑 work to bubble down, and there are
≤ 2𝑑 items that need this work.

▪ There are more items at greater depths, and
it’s these items that take the least work.

▪ Total work is σ𝑑=0
ℎ 2𝑑 ℎ − 𝑑

chapter 2.10

≤ 2 × 2ℎ = 2𝑁 [printed notes chapter 2.10]

2 6 9 3 8 5 11 4 1 7 10

𝑖

0 1 2 3 4 5 6 7 8 9 10

0

1 2

3 4 5 6

7 8 9 10

11

popmin push decreasekey

binary heap 𝑂(log𝑁) 𝑂(log𝑁) 𝑂(log𝑁)

binomial heap 𝑂(log𝑁) 𝑂(log𝑁) 𝑂(log𝑁)

𝑂(1) amortized

Pushing 𝑁 items is 𝑂(𝑁 log𝑁) — but if
we’re clever we can create a binary heap
of 𝑁 items in 𝑂(𝑁).

SECRET SAUCE. Design your data structure so
that most of the time it’s sufficient to only touch
a small bit of it.

▪ The binary heap’s fast-heapification achieves
this through doing its work in a batch (rather
than push by push)

▪ The binomial heap achieves this by splitting
up the heap into semi-isolatable trees

4

3

7

8

popmin push decreasekey

binary heap 𝑂(log𝑁) 𝑂(log𝑁) 𝑂(log𝑁)

binomial heap 𝑂(log𝑁) 𝑂(log𝑁) 𝑂(log𝑁)

𝑂(1) amortized

Pushing 𝑁 items is 𝑂(𝑁 log𝑁) — but if
we’re clever we can create a binary heap
of 𝑁 items in 𝑂(𝑁).

QUESTION1. Can we make both push and
decreasekey be 𝑂(1)?

Dijkstra’s algorithm makes 𝑂(𝐸) calls to push /
decreaskey, and only 𝑂 𝑉 calls to popmin.

QUESTION2. What’s the binomial heap’s
secret sauce that lets it have 𝑂(1) push?

push(new item)

3 12 3 7 9 1 6 5 1

first minitem

0 3 12 3 7 9 1 6 5 1

first minitem

0 3 12 3 7 9 1 6 5 1

first minitem

Linked-list priority queue page 64

decreasekey(item , new key)

3 12 3 7 9 1 6 5 1

first minitem

Linked-list priority queue

3 0 3 7 9 1 6 5 1

first minitem

3 0 3 7 9 1 6 5 1

first minitem

page 64

popmin()

3 12 3 7 9 1 6 5 1

first minitem

Linked-list priority queue

3 12 3 7 9 6 5 1

first minitem

3 12 3 7 9 6 5 1

first minitem

1

page 64

popmin push decreasekey

binary heap 𝑂(log𝑁) 𝑂(log𝑁) 𝑂(log𝑁)

binomial heap 𝑂(log𝑁) 𝑂(1) amort 𝑂(log𝑁)

linked list 𝑂(𝑁) 𝑂(1) 𝑂(1)

Design strategy for the Fibonacci heap:

❖ Give your data enough structure that
you only need to touch a little bit of it

❖ Be lazy: let mess accumulate

❖ Do cleanup in batches

Fibonacci heap 𝑂(log𝑁) amort 𝑂(1) amort 𝑂(1) amort

page 62

batch-push is 𝑂(𝑁)

SECTION 7.6

The Fibonacci Heap

push(new item)

7 1

34

6

5 7 1

34

6

5 2

M

7 1

34

6

M M

minroot

▪ store a list of trees, each a heap
▪ trees can have any shape
▪ keep track of the minroot

1
2
3
4
5
6
7
8
9

10

Maintain a list of heaps (i.e. store a pointer to the root of each heap)
roots = []

Maintain a pointer to the smallest root
minroot = None

def push(Value 𝑣, Key 𝑘):
create a new heap ℎ consisting of a single item (𝑣,𝑘)
add ℎ to the list of roots
update minroot if minroot is None or 𝑘 < minroot.key

add to list add to list

page 65

popmin()

7 1

34

6

5 2

7

6

5 2

4

6

5 2

5 2

7

3

4

6

7

3

4

6

5

2

M

M

extract min root
34

7 3

4

6 7

3

5 2

1

1

set M

12
13
14
15
16
17
18
19

def popmin():
take note of minroot.value and minroot.key
delete the minroot node, and promote its children to be roots
cleanup the roots
while there are two roots with the same degree:

merge those two roots, by making the larger root a child of the smaller
update minroot to point to the root with the smallest key
return the value and key we noted in line 13

page 65-66

decreasekey(item, new key)

1

34

6

2

57

8

1

34

6

2

7

8

1

34

67

8

7

2

1

34

6

0

8

5

3

2

0

restore heap

LAZY STRATEGY
Dump heap-violating nodes into the
root list, to be cleaned up by the next
popmin()

... but we might end up with a heap with
wide shallow trees, which will make
popmin() slow

page 67

decreasekey(item, new key)decreasekey(item, new key)

1

34

6

2

57

8

1

34

6

2

7

8

1

34

67

8

Rule 1. Lose one child, and
you’re marked a LOSER

Rule 2. Lose two children,
and you’re dumped into
the root list

7

1

34

6

0

8

5

3

2

0

restore heap

2

1

34

6

0

8

7

1

restore heap 2

1

34

6

0 1

8 disown

1

34

6

0 1

8

2

& unmark

2

page 67

4

1

5

8

4

1

5

8

4

61 58

4

61

5

4

61 8

30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

Every node will store a flag, n.loser = True / False

def decreasekey(𝑣, 𝑘′):
let 𝑛 be the node where this value is stored
𝑛.key = 𝑘′

if 𝑛 violates the heap condition:
repeat:

𝑝 = 𝑛.parent
remove 𝑛 from 𝑝.children
insert 𝑛 into the list of roots, updating minroot if necessary
𝑛.loser = False
𝑛 = 𝑝

until 𝑝.loser == False
if 𝑝 is not a root:

𝑝.loser = True

Modify popmin so that when we promote minroot’s children, we erase any loser flags

decreasekey restore heap disown 2loser disown 2loser

9 6

8

5

page 68

Sometimes it pays
to let mess build up

Your parents want
lots of grandchildren*
* and they’ll disown you if
you don’t have enough

SECTION 7.8

Amortized analysis of
the Fibonacci Heap

Take-away: this is an elegant use of
potential functions to account for two
separate unbounded-cost operations.

SHAPE THEOREM

Every node has degree ≤ log𝜙𝑁

COMPLEXITY ANALYSIS

In a Fibonacci heap with 𝑁 items,
using the potential function

Φ = num.roots + 2 × num.losers,

▪ push() has amortized cost 𝑂 1

▪ decreasekey() has amortized cost 𝑂(1)

▪ popmin() has amortized cost 𝑂 log𝑁

FIBONACCI HEAP
COMPLEXITY ANALYSIS

SHAPE THEOREM
The largest tree has degree ≤ log2𝑁

COMPLEXITY ANALYSIS

In a binomial heap with 𝑁 items

▪ push() is 𝑂 log𝑁

▪ decreasekey() is 𝑂 log𝑁

▪ popmin() is 𝑂 log𝑁

BINOMIAL HEAP
COMPLEXITY ANALYSIS

7
8
9

10

def push(Value 𝑣, Key 𝑘):
create a new heap ℎ consisting of a single item (𝑣,𝑘)
add ℎ to the list of roots
update minroot if minroot is None or 𝑘 < minroot.key

Φ = num.roots + 2 × num.losers page 73

32
33
34
35
36
37
38
39
40
41
42
43
44

def decreasekey(𝑣, 𝑘′):
let 𝑛 be the node where this value is stored
𝑛.key = 𝑘′

if 𝑛 violates the heap condition:
repeat:

𝑝 = 𝑛.parent
remove 𝑛 from 𝑝.children
insert 𝑛 into the list of roots, updating minroot if necessary
𝑛.loser = False
𝑛 = 𝑝

until 𝑝.loser == False
if 𝑝 is not a root:

𝑝.loser = True

d

a

c

b

loser

loser

Φ = num.roots + 2 × num.losers page 73

12
13
14
15
16
17
18
19

def popmin():
take note of minroot.value and minroot.key
delete the minroot node, and promote its children to be roots
cleanup the roots
while there are two roots with the same degree:

merge those two roots, by making the larger root a child of the smaller
update minroot to point to the root with the smallest key
return the value and key we noted in line 13

Φ = num.roots + 2 × num.losers degree ≤ log𝜙𝑁 page 73

20
21
22
23
24
25
26
27
28
29

def cleanup(roots):
root_array = [None, None,]
for each tree t in roots:

x = t
while root_array[x.degree] is not None:

u = root_array[x.degree]
root_array[x.degree] = None
x = merge(x, u)

root_array[x.degree] = u

roots = list of non-None values from root_array

Φ = num.roots + 2 × num.losers degree ≤ log𝜙𝑁 page 73

12
13
14
15
16
17
18
19

def popmin():
take note of minroot.value and minroot.key
delete the minroot node, and promote its children to be roots
cleanup the roots
while there are two roots with the same degree:

merge those two roots, by making the larger root a child of the smaller
update minroot to point to the root with the smallest key
return the value and key we noted in line 13

0 1 2 3

7 34

6

5

root_array

for each 𝑡 in roots:

7

3

4

6

7

3

updated roots:

20
21
22
23
24
25
26
27
28
29

def cleanup(roots):
root_array = [None, None,]
for each tree t in roots:

x = t
while root_array[x.degree] is not None:

u = root_array[x.degree]
root_array[x.degree] = None
x = merge(x, u)

root_array[x.degree] = u

roots = list of non-None values from root_array

Φ = num.roots + 2 × num.losers degree ≤ log𝜙𝑁 page 73

Φ = num.roots + 2 × num.losers

popmin

decreasekey

page 73

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24

