For advanced data structures like a Python list or a PriorityQueue ...

We should care about the aggregate cost of a sequence of operations,
which might not be as bad as the per-operation worst cases suggest

Fondamental Cuequedly of Amoreiaution : this defines amorti nd coBcs.
For any sequence of operations (starting from a empty data structure)

agg. true cost < agg. amortized cost
Frae cag ¢ st op.
We can obtain amortized costs via z}/potential function @, with
amectiad cos¢ __ ~1 — ~ 1 AP $ %0 F(emph)=0

Think of @ in these ways:

— a bank balance, storing up credit to pay for an expensive operation

— a measure of the mess in the data structure (that’ll have to be cleaned up)
— credit stored on parts of the data structure (that’ll have to be operated on)

class MinList<T>:

def append(T value):
append a new value

def T min():
return the smallest
(without removing it)

The worst-case cost of min is O(n), where n is
the number of items.

QUESTION. What potential function might we
use, to show that append and min both have
amortized cost 0(1)?

e @ = L
Amcﬂ*‘"ad Mﬂ‘ds“:)
. opperd <+ AE S ocCt) +)

o min. c+ D8 =o)L = 0()) awm.

oCl) am.

min

N

T (00

page 59

Stage 1

Use a linked list

min caches its result, so that
next time it only needs to
iterate over newer values

ABSTRACT DATA TYPES

What'’s important is a correctly specified interface

ALGORITHMS

What'’s important is good performance

Dynamic array Python list

0000 P

xLi] }
Iﬁl both are O(1) amortized
x.append(-)

Store the values in an array.

When it gets full, create a new array of
double the capacity, and copy items across.

4.7 Hash tables with chaining
% arvesy 61 Porn(-u.t Fo (vgks /¢L\c.‘uj

188

hash is a function that
maps keys to integers

x = array of pointers to lists

def set(k, v):
b = hash(k) mod len(x)
chain = x[b]
if chain contains an item with key k:
set that item’s value to v
else:
append (k,v) to chain

4.2.4 Dictionary

x = {¢’: 10, ‘c’: 19, ‘b’: 12, ‘e’:

dictionaries support:
1is_empty(), contains(k), get(k),
set(k,v), del(k)

Python has a built-in hash function.

>>> 1 = 10

>>> hash(i)

710

>>> s = “stoats are awesome”

>>> hash(s)
32673850719077449291

153}

4.7 Hash tables with chaining

QQ/\v v thes o
WoM mom &
vevr ible pT¥
i€ e (oabs o€

1 1 teo lons) 7

hash is a function that
= maps keys to integers

X = array of pointers to lists

def set(k, v):
b = hash(k) mod len(x)
chain = x[b]
if chain contains an item with key k:
set that item’s value to v
else:
append (k,v) to chain

Define the loadfacto_r]to bea =n/c
where n is the number of items stored
and c is the capacity of the array i.e. the
number of “buckets”.

If the hash function is perfect, then every
bucket is equally likely, so items will be
distributed uniformly. The average size of

a chain is then

#items n
—_— == .
#buckets ¢

For good performance we want to
maintain a low. In Python, a < 2/3.

We can achieve this by using a dynamic
array for x. When we need to double its
capacity, we’ll rehash all the items.

4.7 Hash tables with open addressing

Since we have the technology to dynamically resize arrays, we don’t need to use
linked lists at all! Just store everything in a big array, and resize + rehash when needed
to keep a < 2/3. (This saves space on pointers, and may help with cache locality.)

¢ o 3 . 3+ 2 9
[- > L >0 (p] (@)

]

<
N

) % o -0

Q S %% %, @ X
S S S
(g D= (=

ermine ermine ermine

mink ?
otter
stoat >

> NotFound
polecat polecat

3-c NotFound

B
=
o
—
-
"8
-

We need
to be smart
about
deletions...

4.7 Hash tables with open addressing

Since we have the technology to dynamically resize arrays, we don’t need to use
linked lists at all! Just store everything in a big array, and resize + rehash when needed
to keep a < 2/3. (This saves space on pointers, and may help with cache locality.)

9 4 % .0
'6006% 5 OO% ‘6(‘% ’o O'F(,
%', %% % %
a-c C& /(‘Q (> Qp
(g D= (=
d-e - -
> NotFound

g
o

4.7 Hash tables with open addressing

X %
EXAMPLE SHEET 3 QUESTION 49 % % %,
Explain carefully how to implement %’& >

delete, lookup, and add.

ermine ermine

We have used what’s called linear probing,
probe(k,j) = (hash(k) + j) mod c # j=attempt number

mink mink
Linear probing tends to produce clusters of colliding
keys. Better alternatives are quadratic probing, otter

probe(k,j) = (hash(k) + cxj + d*j2) mod c

otter

o
=
o
-
-
.
) -
o

DELETED marten

or double hashing,
probe(k,j) = (hash(k) + j*hash,(k)) mod c polecat

NN

polecat

e @ im] Scientists Find Optimal Balance ¢ X |
&< O) https//www.quant... A [T}

I”,\ Quanta i In a 1957 paper published in the IBM Journal of Research and
Development, W. Wesley Peterson identified the main technical
challenge that hash tables pose: They need to be fast, meaning that
they can quickly retrieve the necessary information. But they also need

Scientists Find Optlmal to be compact, using as little memory as possible. These twin
Balance of Data Stﬂl'age objectives are fundamentally at odds. Accessing and modifying a
and Time database can be done more quickly when the hash table has more

N memory; and operations become slower in hash tables that use less

space. Ever since Peterson laid out this challenge, researchers have

tried to find the best balance between time and space.

Computer scientists have now mathematically proved that they have
found the optimal trade-off. The solution came from a pair of recent
papers that complemented each other. “These papers resolve the
long-standing open question about the best possible space-time
trade-offs, yielding deeply surprising results that I expect will have a
significant impact for many years to come,” said Michael

Mitzenmacher, a computer scientist at Harvard University who was

not involved in either study.

P

SECTION 7.5
Three priority queues

4.8.1 Binary heap 4.8 Priority queue

A binary heap is an almost-full binary tree A priority queue holds a dynamic collection of items.
that satisfies the heap property (everywhere Each item has a value v, and a key/priority k.
in the tree, parent key < child keys).

interface PriorityQueue<K,V>:
Operations have cost O(logn), where n is

- boolean is_empty()
the size of the heap. colean 1s_empty

extract the item with the smallest key
Pair<K,V> popmin()

add a new item, and set its key
push(K key, V value)

for an existing item, give it a new (lower) key
decreasekey(V value, K newkey)

left-child:©
right-child: @

chapter 4.8
& page 62

The binary heap

The heap property
every node’s key is < those of its children

chapter 4.8
& page 62

The binary heap

(0,
({8
6 OE ©
@ OO
popmin()
extract root) replace root> bubble down> bubble down> 0
OENO ORI O
6) WO ©) @© ©
@ @G @ @
@/o/&
0@/77

chapter 4.8
& page 62
The binary heap
(1)

©@ @

push(new item)

append o bubble up >

bubble up > o

bubble up > (0]

chapter 4.8
& page 62
The binary heap
(1)

©@ @

push(new item)

append o bubble up >

bubble up > o

bubble up > (0)

(7
decreasekey(item, new key) $/wvilowv

The binary heap

SHAPE LEMMA
The heightis O(log N)
where N is the number of items in the heap

COMPLEXITY ANALYSIS
All operations are O(log N)

chapter 4.8
& page 62

Binomial trees

@ a tree of degree O

merge to give a tree of degree 1

two trees of degree 1
merge to give a tree of degree 2

ﬂ»*“’

two trees of degree 2
@ e “4 merge to give a tree of degree 3
3= es:

%} @ two trees of degree 0

chapter 4.8
& page 63

It’s easy to prove by induction
that a binomial tree of degree k
has

" height k

= 2K nodes

= [children at the root, all of
them binomial trees

chapter 4.8
& page 63

The binomial heap

= 3 list of binomial trees,
with at most one of each degree

= each treeisaheap

merge trees

aééend >

of equal degree

chapter 4.8
& page 63

The binomial heap

bubble ué >

chapter 4
& page 63

The binomial heap

popmin()

extract min rocg>
®

The binomial heap

push(new item)

I
| append ® @ . ‘;h:- merge trees
: o% l\ -~'/,l. of equal degree
- COh O NT 1 (3 5

decreasekey (item, new key)

@) AL
popmin()

—— \I‘;‘ A'_‘\I
[extract min root > -~ @ S
@~ 0 é 4

chapter 4.8
& page 63

:

SHAPE THEOREM

‘A binomial tree of degree k has 2% items and

\height kJ

Hence, in a binomial heap with N items, the binary
digits of N tell us which binomial trees are present

2 2 22
1 o O |

N = q 1Fems =

= #erees =0ClyN),
COMPLEXITY ANALYSIS

push() is O(log N)
we have to merge O(log N) trees

decreasekey() is O(logN)
in the worst case we have to bubble up from the
bottom of the largest tree

popmin() is O(log N)
scan O(log N) trees; promote O(log N) children;
do O(log N) merges to recover the heap

page 62

popmin push decreasekey

binary heap O(logN) O(logN) O(logN)
. - But what about
binomial heap O(logN) O(logN) O(logN) aggregate costs?

popmin push decreasekey
binary heap O(logN) O(logN) O(logN)
binomialheap O(logN) O(logN) O(logN)

() (?/@ @ p
[\
N B (D
-y (8 (6 (5
@ D
ke @

But what about
aggregate costs?

page 62

page 62

popmin push decreasekey
binary heap O(logN) O(logN) O(logN)
. - But what about
binomialheap O(logN) O(logN) O(logN) aggregate costs?

\\\\\

e

~

popmin push decreasekey
binary heap O(logN) O(logN) O(logN)

binomial heap O(logN) O(log?7) O(logN)
O0(1) amortized
[Ex. sheet 6 q. 2, 4]

- D
L //\%J This subsequent push is
WY @ ® @ 0(1), becavse the first

s PN push created space for it.
@ @®@

But what about
aggregate costs?

NEXT TIME. Dijsktra’s algorithm
makes O(E) calls to push /
decreasekey, and only O(V) calls to
popmin. We can live with O(log N) for
popmin, but can we make both push
and decreasekey be 0(1)?

page 62

	Slide 1: For advanced data structures like a Python list or a PriorityQueue dot dot dot
	Slide 2
	Slide 3
	Slide 4: Dynamic array
	Slide 5: 4.2.4 Dictionary
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12: 4.8 Priority queue
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26

