
For advanced data structures like a Python list or a PriorityQueue …

❖ We should care about the aggregate cost of a sequence of operations,
which might not be as bad as the per-operation worst cases suggest

❖ For any sequence of operations (starting from a empty data structure)

agg. true cost ≤ agg. amortized cost

❖ We can obtain amortized costs via a potential function Φ, with

𝑐′ = 𝑐 + ΔΦ

❖ Think of Φ in these ways:
— a bank balance, storing up credit to pay for an expensive operation

— a measure of the mess in the data structure (that’ll have to be cleaned up)

— credit stored on parts of the data structure (that’ll have to be operated on)

Stage 0

▪ Use a linked list
▪ min iterates over the entire

list

Stage 1

▪ Use a linked list
▪ min caches its result, so that

next time it only needs to
iterate over newer values

Stage 2

▪ Use a linked list
▪ Store the current minimum,

and update it on every append

Stage 3

▪ min caches its result,
the same as Stage 1

▪ ... but we argue it’s just as
good as Stage 2

class MinList<T>:

 def append(T value):
 # append a new value

 def T min():
 # return the smallest
 # (without removing it)

The worst-case cost of min is 𝑂 𝑛 , where 𝑛 is
the number of items.

QUESTION. What potential function might we
use, to show that append and min both have
amortized cost 𝑂(1)?

page 59

ABSTRACT DATA TYPES

What’s important is a correctly specified interface

ALGORITHMS

What’s important is good performance

0

Dynamic array Python list

x = [⋯]

x[𝑖]

x.append(⋅)

Store the values in an array.

When it gets full, create a new array of
double the capacity, and copy items across.

both are 𝑂(1) amortized

0

4.2.4 Dictionary

x = {‘a’: 10, ‘c’: 19, ‘b’: 12, ‘e’: 15}

dictionaries support:
is_empty(), contains(k), get(k),
set(k,v), del(k)

4.7 Hash tables with chaining
𝑥

‘a’
10

‘e’
15

‘b’
12

‘c’
19

x = array of pointers to lists

def set(k, v):
 b = hash(k) mod len(x)
 chain = x[b]
 if chain contains an item with key k:
 set that item’s value to v
 else:
 append (k,v) to chain

hash is a function that
maps keys to integers

Python has a built-in hash function.

>>> i = 10
>>> hash(i)
10

>>> s = “stoats are awesome”
>>> hash(s)
3267385019077449291

4.7 Hash tables with chaining

Define the load factor to be 𝛼 = 𝑛/𝑐
where 𝑛 is the number of items stored
and 𝑐 is the capacity of the array i.e. the
number of “buckets”.

If the hash function is perfect, then every
bucket is equally likely, so items will be
distributed uniformly. The average size of
a chain is then

#items

#buckets
=
𝑛

𝑐
= 𝛼.

For good performance we want to
maintain 𝛼 low. In Python, 𝛼 ≤ 2/3.

We can achieve this by using a dynamic
array for x. When we need to double its
capacity, we’ll rehash all the items.

𝑥

‘a’
10

‘e’
15

‘b’
12

‘c’
19

x = array of pointers to lists

def set(k, v):
 b = hash(k) mod len(x)
 chain = x[b]
 if chain contains an item with key k:
 set that item’s value to v
 else:
 append (k,v) to chain

hash is a function that
maps keys to integers

4.7 Hash tables with open addressing
Since we have the technology to dynamically resize arrays, we don’t need to use
linked lists at all! Just store everything in a big array, and resize + rehash when needed
to keep 𝛼 ≤ 2/3. (This saves space on pointers, and may help with cache locality.)

a-c

d-e

f-h

i-l

m-n

o-r

s-u

v-z

ermine

mink

otter

stoat

ermine

mink

otter

stoat

polecat

stoat

a-c NotFound

ermine

mink

otter

polecat

NotFound

We need
to be smart
about
deletions...

4.7 Hash tables with open addressing

a-c

d-e

f-h

i-l

m-n

o-r

s-u

v-z

ermine

mink

otter

stoat

ermine

mink

otter

stoat

polecat

stoat

a-c NotFound

ermine

mink

otter

polecat

ermine

mink

otter

marten

polecat

DELETED

Since we have the technology to dynamically resize arrays, we don’t need to use
linked lists at all! Just store everything in a big array, and resize + rehash when needed
to keep 𝛼 ≤ 2/3. (This saves space on pointers, and may help with cache locality.)

4.7 Hash tables with open addressing

ermine

mink

otter

DELETED

polecat

ermine

mink

otter

marten

polecat

EXAMPLE SHEET 3 QUESTION 49
Explain carefully how to implement
delete, lookup, and add.

We have used what’s called linear probing,
probe(k,j) = (hash(k) + j) mod c # j=attempt number

Linear probing tends to produce clusters of colliding
keys. Better alternatives are quadratic probing,
probe(k,j) = (hash(k) + c*j + d*j2) mod c

or double hashing,
probe(k,j) = (hash(k) + j*hash2(k)) mod c

SECTION 7.5

Three priority queues

0

4.8 Priority queue4.8.1 Binary heap

interface PriorityQueue<K,V>:

 boolean is_empty()

 # extract the item with the smallest key
 Pair<K,V> popmin()

 # add a new item, and set its key
 push(K key, V value)

 # for an existing item, give it a new (lower) key
 decreasekey(V value, K newkey)

A priority queue holds a dynamic collection of items.
Each item has a value 𝑣, and a key/priority 𝑘.

8

6

5

10

7 9

1

3

4 11

2

A binary heap is an almost-full binary tree
that satisfies the heap property (everywhere
in the tree, parent key ≤ child keys).

Operations have cost 𝑂 log𝑛 , where 𝑛 is
the size of the heap.

key:
value: ...
parent:
left-child:
right-child:

6

0

51

6 1 6 9

12 7 3

The binary heap

The heap property
every node’s key is ≤ those of its children

chapter 4.8
& page 62

The binary heap
0

51

6 1 6 9

12 7 3

3

51

6 1 6 9

12 7

3

51

6 1 6 9

12 7

0

3

1

5

6 1 6 9

12 7

1

51

6 3 6 9

12 7

popmin()

replace root bubble down bubble downextract root

3

chapter 4.8
& page 62

The binary heap

push(new item)

1

51

6 3 6 9

12 7

0

1

51

6 6 9

12 7 3

0

1

5

6 1 6 9

12 7 3

0

51

6 1 6 9

12 7 3

1

51

6 3 6 9

12 7

bubble up bubble up bubble upappend

0

chapter 4.8
& page 62

push(new item)

0

1

51

6 3 6 9

12 7

0

1

51

6 6 9

12 7 3

0

1

5

6 1 6 9

12 7 3

0

51

6 1 6 9

12 7 3

bubble up bubble up bubble upappend

The binary heap
1

51

6 3 6 9

12 7

decreasekey(item, new key)

chapter 4.8
& page 62

0

51

6 1 6 9

12 7 3

The binary heap

SHAPE LEMMA
The height is 𝑂 log𝑁
where 𝑁 is the number of items in the heap

COMPLEXITY ANALYSIS
All operations are 𝑂(log𝑁)

chapter 4.8
& page 62

Binomial trees

6

9

2

5

3

73

12

2

5

a tree of degree 0

2 two trees of degree 0
merge to give a tree of degree 1

2

5

6

9

two trees of degree 1
merge to give a tree of degree 2

two trees of degree 2
merge to give a tree of degree 3

chapter 4.8
& page 63

It’s easy to prove by induction
that a binomial tree of degree 𝑘
has

▪ height 𝑘

▪ 2𝑘 nodes

▪ 𝑘 children at the root, all of

them binomial trees

The binomial heap
3 1

56

9

1

73

12

▪ a list of binomial trees,
with at most one of each degree

▪ each tree is a heap

push(new item)

1

56

9

1

73

12

1

56

9

1

73

12

4 3

4

3merge trees

of equal degree

append

chapter 4.8
& page 63

The binomial heap

decreasekey(item, new key)

2

3

1

56

9

1

7

4

3

2

3

1

56

9

1

7

4

3

bubble up

3 1

56

9

1

73

1212

chapter 4.8
& page 63

The binomial heap

popmin()

3 1

56

9

1

73

12

4

3

973

12

1

73

12

5 6

9 4

3

5

1

73

124

3

5

6

9

561

1

73

12

4

3

6

9

extract min root

1

1

chapter 4
& page 63

The binomial heap
3 1

56

9

1

73

12

SHAPE THEOREM
▪ A binomial tree of degree 𝑘 has 2𝑘 items and

height 𝑘
▪ Hence, in a binomial heap with 𝑁 items, the binary

digits of 𝑁 tell us which binomial trees are present

COMPLEXITY ANALYSIS

▪ push() is 𝑂 log𝑁
we have to merge 𝑂 log𝑁 trees

▪ decreasekey() is 𝑂 log𝑁
in the worst case we have to bubble up from the
bottom of the largest tree

▪ popmin() is 𝑂 log𝑁
scan 𝑂(log𝑁) trees; promote 𝑂 log𝑁 children;
do 𝑂(log𝑁) merges to recover the heap

chapter 4.8
& page 63

popmin push decreasekey

binary heap 𝑂(log𝑁) 𝑂(log𝑁) 𝑂(log𝑁)

binomial heap 𝑂(log𝑁) 𝑂(log𝑁) 𝑂(log𝑁)
But what about
aggregate costs?

page 62

4 3 1

56

9

7

8

popmin push decreasekey

binary heap 𝑂(log𝑁) 𝑂(log𝑁) 𝑂(log𝑁)

binomial heap 𝑂(log𝑁) 𝑂(log𝑁) 𝑂(log𝑁)
But what about
aggregate costs?

page 62

1. push() a new item

1

56

9

4

3

7

8

4

3

7

8

popmin push decreasekey

binary heap 𝑂(log𝑁) 𝑂(log𝑁) 𝑂(log𝑁)

binomial heap 𝑂(log𝑁) 𝑂(log𝑁) 𝑂(log𝑁)
But what about
aggregate costs?

page 62

1. push() a new item

1

56

94

3

7

8

4

3

7

8

2

popmin push decreasekey

binary heap 𝑂(log𝑁) 𝑂(log𝑁) 𝑂(log𝑁)

binomial heap 𝑂(log𝑁) 𝑂(log𝑁) 𝑂(log𝑁)

𝑂(1) amortized
[Ex. sheet 6 q. 2, 4]

But what about
aggregate costs?

This subsequent push is
𝑂(1), because the first
push created space for it.

page 62

NEXT TIME. Dijsktra’s algorithm

makes 𝑂(𝐸) calls to push /
decreasekey, and only 𝑂(𝑉) calls to
popmin. We can live with 𝑂(log𝑁) for
popmin, but can we make both push
and decreasekey be 𝑂(1)?

	Slide 1: For advanced data structures like a Python list or a PriorityQueue dot dot dot
	Slide 2
	Slide 3
	Slide 4: Dynamic array
	Slide 5: 4.2.4 Dictionary
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12: 4.8 Priority queue
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26

