
For advanced data structures like a Python list or a 
Priority Queue,

❖ We should care about the aggregate cost of a 
sequence of operations

❖ This might not be as bad as the per-operation 
worst cases suggest

❖ Amortized costs and potential functions are a 
handy way to reason about aggregate costs

TODAY



class MinList<T>:

    def append(T value): 
        # append a new value

    def flush():
        # empty the list

    def foreach(f):
        # do f(x) for each item

    def T min():
        # return the smallest
        # (without removing it)

Stage 0

▪ Use a linked list
▪ min iterates over the entire 

list

Stage 1

▪ Use a linked list
▪ min caches its result, so that 

next time it only needs to 
iterate over newer values

Stage 2

▪ Use a linked list
▪ Store the current minimum, 

and update it on every append

Stage 3

▪ min caches its result, 
the same as Stage 1

▪ ... but we argue it’s just as 
good as Stage 2

append is Θ(1)
min is Θ(𝑛)

min is Θ(𝑛)
in the worst case

append is Θ(1)
min is Θ(1)

let 𝑛 = #items



append append append min

append append append min
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Stage 3

▪ min caches its result, 
the same as Stage 1

▪ ... but we argue it’s just as 
good as Stage 2



FUNDAMENTAL INEQUALITY OF AMORTIZATION
Let there be a sequence of 𝑚 operations, applied to an initially-empty 
data structure, whose true costs are 𝑐1, 𝑐2, … , 𝑐𝑚. Suppose someone 
invents 𝑐1

′ , 𝑐2
′ , … , 𝑐𝑚

′ . These are called amortized costs if

𝑐1 + ⋯ + 𝑐𝑗 ≤ 𝑐1
′ + ⋯ + 𝑐𝑗

′ for all 𝑗 ≤ 𝑚
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append append append min

append append append min

Ex. sheet 6 q.6 asks you to 
think through why this is 
a sensible restriction



I’ve designed a data structure that 
supports push at amortized cost 
O(1) and popmin at amortized cost 
O(log N), assuming the number of 
items never exceeds N.

For any sequence of 𝑚1 × push and 𝑚2 × popmin, 
applied to an initially empty data structure,

aggregate cost ≤  𝑚1 𝑂 1 + 𝑚2 𝑂 log 𝑁 =  𝑂(𝑚1 + 𝑚2 log 𝑁)
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Amortized costs make it easy for the user to reason about aggregate costs.
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SECTION 7.4

Potential functions
or, how on earth do we come up with 
useful amortized costs?



class MinList<T>:

    def append(T value): 
        # append a new value

    def T min():
        # caches the result, so we
        # only need to iterate over
        # newly-appended items
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𝑐𝐴 𝑐𝐴 𝑐𝐴 𝑐𝑀 + 3𝑐𝐼

append append append min

𝑐𝐴 𝑐𝐴 𝑐𝑀 + 2𝑐𝐼

append append min

aggregate 
true cost

❖ Suppose we can store ‘credit’ in the data structure, and operations can either store or release credit

❖ Let the ‘accounting’ cost of an operation be:     
accounting

cost
 =

true
cost

 +
credit

it stores
 −

credit
it releases

❖ Let’s ‘pay ahead’ for the potentially-costly operations
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THEOREM. These are valid amortized 
costs i.e. for any sequence of operations 
on an initially-empty data structure

aggregate
true
cost

≤  
aggregate
amortized

cost

❖ Suppose we can store ‘credit’ in the data structure, and operations can either store or release credit

❖ Let the ‘accounting’ cost of an operation be:     
accounting

cost
 =

true
cost

 +
credit

it stores
 −

credit
it releases

❖ Let’s ‘pay ahead’ for the potentially-costly operations



Let Ω be the set of all states our data structure might be in.  
A function Φ: Ω → ℝ is called a potential function if

Φ 𝒮 ≥ 0 for all 𝒮 ∈ Ω
Φ empty = 0

For an operation 𝒮ante →  𝒮post with true cost 𝑐, define the accounting cost to be

𝑐′ = 𝑐 + Φ 𝒮post − Φ(𝒮ante )

THE ‘POTENTIAL’ THEOREM:   These are valid amortized costs.

PROOF: Consider an arbitrary sequence of operations, starting from empty:  𝒮0

 𝑐1 
𝒮1

 𝑐2 
𝒮2 → ⋯

 𝑐𝑚 
𝒮𝑚

= −Φ 𝒮0 + 𝑐1 + ⋯ + 𝑐𝑚 + Φ 𝒮𝑚

≥ 𝑐1 + ⋯ + 𝑐𝑚

= −Φ 𝒮0 + 𝑐1 + Φ 𝒮1

= −Φ 𝒮0 + 𝑐1 − Φ 𝒮1 + 𝑐2 + Φ 𝒮2

= −Φ 𝒮0 + 𝑐1 − Φ 𝒮1 + 𝑐2 + Φ 𝒮2  ⋯ − Φ 𝒮𝑚−1 + 𝑐𝑚 + Φ 𝒮𝑚

aggregate
accounting

cost
= 𝑐1

′ + 𝑐2
′ + ⋯ + 𝑐𝑚

′
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=
aggregate
true cost



EXAMPLE: DYNAMIC ARRAY 

A Python list is implemented as a dynamically-sized arrays. 
It starts with capacity 1, and doubles its capacity whenever 
it becomes full.

Suppose the cost of writing an item is 1, and the cost of 
doubling capacity from 𝑚 to 2𝑚 (and copying across the 
existing items) is 𝜅𝑚.

Show that the amortized cost of append is 𝑂(1).

initially empty

append()

append(), requires doubling

append(), requires doubling

append()

append()

append(), requires doubling

append()
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EXAMPLE: DYNAMIC ARRAY (sloppy style)

A Python list is implemented as a dynamically-sized 
arrays. It starts with capacity 1, and doubles its capacity 
whenever it becomes full.

Suppose the cost of writing an item is 𝑂(1), and the 
cost of doubling capacity from 𝑚 to 2𝑚 (and copying 
across the existing items) is 𝑂(𝑚).

Show that the amortized cost of append is 𝑂(1).

page 58


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 15

