
For advanced data structures like a Python list or a
Priority Queue,

❖ We should care about the aggregate cost of a
sequence of operations

❖ This might not be as bad as the per-operation
worst cases suggest

❖ Amortized costs and potential functions are a
handy way to reason about aggregate costs

TODAY

class MinList<T>:

 def append(T value):
 # append a new value

 def flush():
 # empty the list

 def foreach(f):
 # do f(x) for each item

 def T min():
 # return the smallest
 # (without removing it)

Stage 0

▪ Use a linked list
▪ min iterates over the entire

list

Stage 1

▪ Use a linked list
▪ min caches its result, so that

next time it only needs to
iterate over newer values

Stage 2

▪ Use a linked list
▪ Store the current minimum,

and update it on every append

Stage 3

▪ min caches its result,
the same as Stage 1

▪ ... but we argue it’s just as
good as Stage 2

append is Θ(1)
min is Θ(𝑛)

min is Θ(𝑛)
in the worst case

append is Θ(1)
min is Θ(1)

let 𝑛 = #items

append append append min

append append append min

page 53

Stage 3

▪ min caches its result,
the same as Stage 1

▪ ... but we argue it’s just as
good as Stage 2

FUNDAMENTAL INEQUALITY OF AMORTIZATION
Let there be a sequence of 𝑚 operations, applied to an initially-empty
data structure, whose true costs are 𝑐1, 𝑐2, … , 𝑐𝑚. Suppose someone
invents 𝑐1

′ , 𝑐2
′ , … , 𝑐𝑚

′ . These are called amortized costs if

𝑐1 + ⋯ + 𝑐𝑗 ≤ 𝑐1
′ + ⋯ + 𝑐𝑗

′ for all 𝑗 ≤ 𝑚

page 55

append append append min

append append append min

FUNDAMENTAL INEQUALITY OF AMORTIZATION
Let there be a sequence of 𝑚 operations, applied to an initially-empty
data structure, whose true costs are 𝑐1, 𝑐2, … , 𝑐𝑚. Suppose someone
invents 𝑐1

′ , 𝑐2
′ , … , 𝑐𝑚

′ . These are called amortized costs if

𝑐1 + ⋯ + 𝑐𝑗 ≤ 𝑐1
′ + ⋯ + 𝑐𝑗

′ for all 𝑗 ≤ 𝑚

page 55

append append append min

append append append min

Ex. sheet 6 q.6 asks you to
think through why this is
a sensible restriction

I’ve designed a data structure that
supports push at amortized cost
O(1) and popmin at amortized cost
O(log N), assuming the number of
items never exceeds N.

For any sequence of 𝑚1 × push and 𝑚2 × popmin,
applied to an initially empty data structure,

aggregate cost ≤ 𝑚1 𝑂 1 + 𝑚2 𝑂 log 𝑁 = 𝑂(𝑚1 + 𝑚2 log 𝑁)

page 55

Amortized costs make it easy for the user to reason about aggregate costs.

I’ve designed a data structure that
supports push at amortized cost O(1)
and popmin at amortized cost O(log N),
assuming the number of items never
exceeds N.

For any sequence of 𝑚1 × push and 𝑚2 × popmin,
applied to an initially empty data structure,

aggregate cost ≤ 𝑚1 𝑂 1 + 𝑚2 𝑂 log 𝑁 = 𝑂(𝑚1 + 𝑚2 log 𝑁)

page 55

Amortized costs make it easy for the user to reason about aggregate costs.

SECTION 7.4

Potential functions
or, how on earth do we come up with
useful amortized costs?

class MinList<T>:

 def append(T value):
 # append a new value

 def T min():
 # caches the result, so we
 # only need to iterate over
 # newly-appended items

page 57

𝑐𝐴 𝑐𝐴 𝑐𝐴 𝑐𝑀 + 3𝑐𝐼

append append append min

𝑐𝐴 𝑐𝐴 𝑐𝑀 + 2𝑐𝐼

append append min

aggregate
true cost

❖ Suppose we can store ‘credit’ in the data structure, and operations can either store or release credit

❖ Let the ‘accounting’ cost of an operation be:
accounting

cost
 =

true
cost

 +
credit

it stores
 −

credit
it releases

❖ Let’s ‘pay ahead’ for the potentially-costly operations

class MinList<T>:

 def append(T value):
 # append a new value

 def T min():
 # caches the result, so we
 # only need to iterate over
 # newly-appended items

page 57

𝑐𝐴 𝑐𝐴 𝑐𝐴 𝑐𝑀 + 3𝑐𝐼

append append append min

𝑐𝐴 𝑐𝐴 𝑐𝑀 + 2𝑐𝐼

append append min

𝑐𝐴 + € 𝑐𝐴 + € 𝑐𝐴 + € 𝑐𝑀

append append append min

𝑐𝐴 + € 𝑐𝐴 + € 𝑐𝑀

append append min

aggregate
true cost

aggregate
accounting cost

❖ Suppose we can store ‘credit’ in the data structure, and operations can either store or release credit

❖ Let the ‘accounting’ cost of an operation be:
accounting

cost
 =

true
cost

 +
credit

it stores
 −

credit
it releases

❖ Let’s ‘pay ahead’ for the potentially-costly operations

class MinList<T>:

 def append(T value):
 # append a new value

 def T min():
 # caches the result, so we
 # only need to iterate over
 # newly-appended items

page 57

𝑐𝐴 𝑐𝐴 𝑐𝐴 𝑐𝑀 + 3𝑐𝐼

append append append min

𝑐𝐴 𝑐𝐴 𝑐𝑀 + 2𝑐𝐼

append append min

𝑐𝐴 + € 𝑐𝐴 + € 𝑐𝐴 + € 𝑐𝑀

append append append min

𝑐𝐴 + € 𝑐𝐴 + € 𝑐𝑀

append append min

aggregate
true cost

aggregate
accounting cost

THEOREM. These are valid amortized
costs i.e. for any sequence of operations
on an initially-empty data structure

aggregate
true
cost

≤
aggregate
amortized

cost

❖ Suppose we can store ‘credit’ in the data structure, and operations can either store or release credit

❖ Let the ‘accounting’ cost of an operation be:
accounting

cost
 =

true
cost

 +
credit

it stores
 −

credit
it releases

❖ Let’s ‘pay ahead’ for the potentially-costly operations

Let Ω be the set of all states our data structure might be in.
A function Φ: Ω → ℝ is called a potential function if

Φ 𝒮 ≥ 0 for all 𝒮 ∈ Ω
Φ empty = 0

For an operation 𝒮ante → 𝒮post with true cost 𝑐, define the accounting cost to be

𝑐′ = 𝑐 + Φ 𝒮post − Φ(𝒮ante)

THE ‘POTENTIAL’ THEOREM: These are valid amortized costs.

PROOF: Consider an arbitrary sequence of operations, starting from empty: 𝒮0

 𝑐1
𝒮1

 𝑐2
𝒮2 → ⋯

 𝑐𝑚
𝒮𝑚

= −Φ 𝒮0 + 𝑐1 + ⋯ + 𝑐𝑚 + Φ 𝒮𝑚

≥ 𝑐1 + ⋯ + 𝑐𝑚

= −Φ 𝒮0 + 𝑐1 + Φ 𝒮1

= −Φ 𝒮0 + 𝑐1 − Φ 𝒮1 + 𝑐2 + Φ 𝒮2

= −Φ 𝒮0 + 𝑐1 − Φ 𝒮1 + 𝑐2 + Φ 𝒮2 ⋯ − Φ 𝒮𝑚−1 + 𝑐𝑚 + Φ 𝒮𝑚

aggregate
accounting

cost
= 𝑐1

′ + 𝑐2
′ + ⋯ + 𝑐𝑚

′

page 57
page 61

=
aggregate
true cost

EXAMPLE: DYNAMIC ARRAY

A Python list is implemented as a dynamically-sized arrays.
It starts with capacity 1, and doubles its capacity whenever
it becomes full.

Suppose the cost of writing an item is 1, and the cost of
doubling capacity from 𝑚 to 2𝑚 (and copying across the
existing items) is 𝜅𝑚.

Show that the amortized cost of append is 𝑂(1).

initially empty

append()

append(), requires doubling

append(), requires doubling

append()

append()

append(), requires doubling

append()

page 58

EXAMPLE: DYNAMIC ARRAY (sloppy style)

A Python list is implemented as a dynamically-sized
arrays. It starts with capacity 1, and doubles its capacity
whenever it becomes full.

Suppose the cost of writing an item is 𝑂(1), and the
cost of doubling capacity from 𝑚 to 2𝑚 (and copying
across the existing items) is 𝑂(𝑚).

Show that the amortized cost of append is 𝑂(1).

page 58

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 15

