
SECTION 7

Advanced data structures

SECTION 7.1

Aggregate analysis

You’ve heard the
moral: “slow and
steady wins the race”.

Share your run

Time min/km

Total Distance 10km

Moving Time 58:27

Share your run

Time min/km

Total Distance 10km

Moving Time 53:16

My version: “whoever
finishes the race
fastest wins the race”.

decreasekeypushpopmin

time

Running time of each operation,
in a run of Dijkstra’s algorithm

with a binary heap

time

with a cleverer heap

total time = 𝑂 𝑉 × 𝑐popmin

+𝑂 𝐸 × 𝑐push/dec.key

Don’t worry about the
worst-case cost of each
individual operation.

Worry about the
worst-case aggregate cost
of a
sequence of operations.

page 51

Advanced data structures involve a clever design tradeoff,
to make sequences of operations cheaper:

❖ individual operations are usually cheap, but occasionally expensive

❖ the worst-case aggregate cost of a sequence of 𝑚 operations is
cheaper than 𝑚 times the worst-case of a single operation

value: 5
next
prev

value: 3
next
prev value: 1

next
prev

head
last

DOUBLY-LINKED LIST PYTHON LIST

x = [⋯]

x[𝑖]

x.append(⋅)

x = DoublyLinkedList(⋯)

x[𝑖]

x.append(⋅)

x.append(⋅)

To design advanced data structures,
we need to be able to reason about
aggregate costs. How?

❖ Just be clever and
work hard

❖ Use an accounting trick called
amortized costs

SECTION 7.2, 7.3

Amortized costs

class MinList<T>:

 def append(T value):
 # append a new value

 def flush():
 # empty the list

 def foreach(f):
 # do f(x) for each item

 def T min():
 # return the smallest
 # (without removing it)

Stage 0

▪ Use a linked list
▪ min iterates over the entire

list

Stage 1

▪ Use a linked list
▪ min caches its result, so that

next time it only needs to
iterate over newer values

Stage 2

▪ Use a linked list
▪ Store the current minimum,

and update it on every append

Stage 3

▪ min caches its result,
the same as Stage 1

▪ ... but we argue it’s just as
good as Stage 2

page 53

