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A phylogenetic tree is a tree 
representation of the evolutionary 
history of a set of gene sequences 
e.g. COVID variants.



SECTIONS 6.5 and 6.6

Prim’s and Kruskal’s 
algorithms
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genome 𝑖
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high similarity
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Similarity matrix Similarity graph

tree edges

+ subtree

Given the similarity score between every pair of genomes, can we reconstruct a likely phylogenetic 
tree? In other words, can we find a high-similarity tree embedded in the similarity graph?



DEFINITIONS

Given a connected undirected graph 𝑔 with edge 
weights,

▪ A spanning tree of 𝑔 is a tree that connects all of 
𝑔’s vertices, using some or all of 𝑔’s edges

▪ The weight of a spanning tree is the sum of all its 
edge weights

▪ A minimum spanning tree (MST) is a spanning 
tree that has minimum weight among all 
spanning trees

PROBLEM STATEMENT
Given such a graph, find a minimum spanning tree
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weight 6
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depth-first search

breadth-first search

Dijkstra’s algorithm

Bellman-Ford algorithm

Johnson’s algorithm

Ford-Fulkerson algorithm

matchings

topological sort

minimum spanning tree

dynamic programming

greedy algorithms

translation strategy
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SIMPLE GREEDY ALGORITHM: 
Which edge would you add 
next, to grow the tree?

Let’s build up a tree, edge by edge.
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PRIM’S ALGORITHM
Choose an arbitrary start vertex as our initial tree.
Then, given a tree we’ve built so far,

1. look at the frontier of vertices we might add next,
and at the cut between our tree and those vertices 

2. pick the lowest-weight edge across this cut,
and add it to the tree

3. Assert: the tree we have so far is part of some 
minimum spanning tree

Repeat until we have a spanning tree.

PROOF OF CORRECTNESS (OUTLINE)
We can prove the assertion on line 3, using the 
“breakpoint” proof strategy plus some fiddly 
maths about trees. The final output is hence a 
minimum spanning tree.
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PRIM’S ALGORITHM
Choose an arbitrary start vertex as our initial tree.
Then, given a tree we’ve built so far,

1. look at the frontier of vertices we might add next,
and at the cut between our tree and those vertices 

2. pick the lowest-weight edge across this cut,
and add it to the tree

3. Assert: the tree we have so far is part of some 
minimum spanning tree

Repeat until we have a spanning tree.
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def prim(g, s):
for v in g.vertices:

v.distance = ∞
v.in_tree = False

s.come_from = None
s.distance = 0
toexplore = PriorityQueue([s], sortkey = λv: v.distance)

while not toexplore.isempty():
v = toexplore.popmin()
v.in_tree = True
for (w, edgeweight) in v.neighbours:

if (not w.in_tree) and edgeweight < w.distance:
w.distance = edgeweight
w.come_from = v
if w in toexplore:

toexplore.decreasekey(w)
else:

toexplore.push(w)

Don’t recompute the 
frontier every iteration.

Instead, store it & 
update it.
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PRIM’S ALGORITHM
Given a tree we’ve built so far,

1. look at the frontier of vertices we might add next,
and at the cut between our tree and those vertices 

2. pick the lowest-weight edge across this cut,
and add it to the tree

3. Assert: the tree we have so far is part of some 
minimum spanning tree

Repeat until we have a spanning tree.
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def prim(g, s):
for v in g.vertices:

v.distance = ∞
v.in_tree = False

s.come_from = None
s.distance = 0
toexplore = PriorityQueue([s], sortkey = λv: v.distance)

while not toexplore.isempty():
v = toexplore.popmin()
v.in_tree = True
for (w, edgeweight) in v.neighbours:

if (not w.in_tree) and edgeweight < w.distance:
w.distance = edgeweight
w.come_from = v
if w in toexplore:

toexplore.decreasekey(w)
else:

toexplore.push(w)
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def dijkstra(g, s):
for v in g.vertices:

v.distance = ∞

s.distance = 0

toexplore = PriorityQueue([s], sortkey = 𝜆v: v.distance)

while not toexplore.is_empty():
v = toexplore.popmin()

for (w,edgecost) in v.neighbours:
dist_w = v.distance + edgecost
if dist_w < w.distance:

w.distance = dist + w

if w in toexplore:
toexplore.decreasekey(w)

else:
toexplore.push(w)
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SIMPLE GREEDY ALGORITHM: 
Which edge would you add 
next, to grow the forest?

Alternatively ...
Let’s build up a forest, edge by edge.
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KRUSKAL’S ALGORITHM
Given a forest we’ve built so far,

1. look at all the edges that would join two fragments 
of the forest

2. pick the lowest-weight one and add it to the forest,
thereby joining two fragments

3. Assert: the forest we have so far is part of some 
minimum spanning tree

Repeat until we have a spanning tree.

PROOF OF CORRECTNESS (OUTLINE)
We can prove the assertion on line 3, using the 
“breakpoint” proof strategy plus some fiddly 
maths about trees. The final output is hence a 
minimum spanning tree.
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EXERCISE. Run through the 
steps of Kruskal’s algorithm.
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Kruskal’s algorithm in effect builds a 
classification tree; vertices connected by low-
weight edges become nearby leaves of the tree.
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def kruskal(g):
tree_edges = []
partition = DisjointSet()
for v in g.vertices:

partition.addsingleton(v)
edges = sorted(g.edges, sortkey = 𝜆(u,v,weight): weight)

for (u,v,edgeweight) in g.edges:
p = partition.getsetwith(u)
q = partition.getsetwith(v)
if p != q:

tree_edges.append((u,v))
partition.merge(p, q)

KRUSKAL’S ALGORITHM
Given a forest we’ve built so far,

1. look at all the edges that would join two fragments 
of the forest

2. pick the lowest-weight one and add it to the tree,
thereby joining two fragments

3. Assert: the forest we have so far is part of some 
minimum spanning tree

Repeat until we have a spanning tree.

Don’t recompute these 
edges every iteration.

Just pre-sort the list of all 
edges, then iterate through and 
ignore those that are within-
fragment.
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def kruskal(g):
tree_edges = []
partition = DisjointSet()
for v in g.vertices:

partition.addsingleton(v)
edges = sorted(g.edges, sortkey = 𝜆(u,v,weight): weight)

for (u,v,edgeweight) in g.edges:
p = partition.getsetwith(u)
q = partition.getsetwith(v)
if p != q:

tree_edges.append((u,v))
partition.merge(p, q)

The abstract data type DisjointSet stores 
a collection of disjoint sets, and supports

▪ addsingleton(v)
▪ p = getsetwith(v)
▪ merge(p,q)
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QUESTION. How might we segment 
this image into “handsome stoat” 
and “background”?

depth-first search

breadth-first search

Dijkstra’s algorithm

Bellman-Ford algorithm

Johnson’s algorithm

Ford-Fulkerson algorithm

matchings

topological sort

Prim, Kruskal

dynamic programming

greedy algorithms

translation strategy



1. define a grid



2. measure dissimilarity along edges



3. run Kruskal’s algorithm, and 
stop when the forest it’s 

building has just a few trees



1. define a grid

Alternatively ...



2. measure dissimilarity along edges

Alternatively ...



3. ask the user to label some “stoat” 
points and some “background” points

Alternatively ...



4. set up a flow network

source
sink

Alternatively ...



5. find a minimum-capacity cut

source
sink

Alternatively ...
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