
19A

19B

20A

20B

20C

20D

20E (EU1)

20F

20G

20H/
501Y.V2

20I/501Y.V1
(UK variant)

20J/
501Y.V3

nextstrain.org 20 February 2021

A phylogenetic tree is a tree 
representation of the evolutionary 
history of a set of gene sequences 
e.g. COVID variants.



SECTIONS 6.5 and 6.6

Prim’s and Kruskal’s 
algorithms



high similarity

low similarity

genome 𝑖

genome 𝑗

high similarity

low similarity

Similarity matrix Similarity graph

tree edges

+ subtree

Given the similarity score between every pair of genomes, can we reconstruct a likely phylogenetic 
tree? In other words, can we find a high-similarity tree embedded in the similarity graph?



DEFINITIONS

Given a connected undirected graph 𝑔 with edge 
weights,

▪ A spanning tree of 𝑔 is a tree that connects all of 
𝑔’s vertices, using some or all of 𝑔’s edges

▪ The weight of a spanning tree is the sum of all its 
edge weights

▪ A minimum spanning tree (MST) is a spanning 
tree that has minimum weight among all 
spanning trees

PROBLEM STATEMENT
Given such a graph, find a minimum spanning tree

3
2

1

2

3
2

1

2

3
2

1

2

page 42

spanning 
tree, 
weight 6

not a 
spanning tree

spanning 
tree, 
weight 6



depth-first search

breadth-first search

Dijkstra’s algorithm

Bellman-Ford algorithm

Johnson’s algorithm

Ford-Fulkerson algorithm

matchings

topological sort

minimum spanning tree

dynamic programming

greedy algorithms

translation strategy



12

7

13

15

2

18

6

4

3
20

5

A

D

B

C

E

G

I

H

J

F

SIMPLE GREEDY ALGORITHM: 
Which edge would you add 
next, to grow the tree?

Let’s build up a tree, edge by edge.

page 42



PRIM’S ALGORITHM
Choose an arbitrary start vertex as our initial tree.
Then, given a tree we’ve built so far,

1. look at the frontier of vertices we might add next,
and at the cut between our tree and those vertices 

2. pick the lowest-weight edge across this cut,
and add it to the tree

3. Assert: the tree we have so far is part of some 
minimum spanning tree

Repeat until we have a spanning tree.

PROOF OF CORRECTNESS (OUTLINE)
We can prove the assertion on line 3, using the 
“breakpoint” proof strategy plus some fiddly 
maths about trees. The final output is hence a 
minimum spanning tree.

page 43



PRIM’S ALGORITHM
Choose an arbitrary start vertex as our initial tree.
Then, given a tree we’ve built so far,

1. look at the frontier of vertices we might add next,
and at the cut between our tree and those vertices 

2. pick the lowest-weight edge across this cut,
and add it to the tree

3. Assert: the tree we have so far is part of some 
minimum spanning tree

Repeat until we have a spanning tree.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

def prim(g, s):
for v in g.vertices:

v.distance = ∞
v.in_tree = False

s.come_from = None
s.distance = 0
toexplore = PriorityQueue([s], sortkey = λv: v.distance)

while not toexplore.isempty():
v = toexplore.popmin()
v.in_tree = True
for (w, edgeweight) in v.neighbours:

if (not w.in_tree) and edgeweight < w.distance:
w.distance = edgeweight
w.come_from = v
if w in toexplore:

toexplore.decreasekey(w)
else:

toexplore.push(w)

Don’t recompute the 
frontier every iteration.

Instead, store it & 
update it.

page 43



PRIM’S ALGORITHM
Given a tree we’ve built so far,

1. look at the frontier of vertices we might add next,
and at the cut between our tree and those vertices 

2. pick the lowest-weight edge across this cut,
and add it to the tree

3. Assert: the tree we have so far is part of some 
minimum spanning tree

Repeat until we have a spanning tree.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

def prim(g, s):
for v in g.vertices:

v.distance = ∞
v.in_tree = False

s.come_from = None
s.distance = 0
toexplore = PriorityQueue([s], sortkey = λv: v.distance)

while not toexplore.isempty():
v = toexplore.popmin()
v.in_tree = True
for (w, edgeweight) in v.neighbours:

if (not w.in_tree) and edgeweight < w.distance:
w.distance = edgeweight
w.come_from = v
if w in toexplore:

toexplore.decreasekey(w)
else:

toexplore.push(w)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

def dijkstra(g, s):
for v in g.vertices:

v.distance = ∞

s.distance = 0

toexplore = PriorityQueue([s], sortkey = 𝜆v: v.distance)

while not toexplore.is_empty():
v = toexplore.popmin()

for (w,edgecost) in v.neighbours:
dist_w = v.distance + edgecost
if dist_w < w.distance:

w.distance = dist + w

if w in toexplore:
toexplore.decreasekey(w)

else:
toexplore.push(w)



12

7

13

15

2

18

6

4

3
20

5

A

D

B

C

E

G

I

H

J

F

SIMPLE GREEDY ALGORITHM: 
Which edge would you add 
next, to grow the forest?

Alternatively ...
Let’s build up a forest, edge by edge.

page 45



KRUSKAL’S ALGORITHM
Given a forest we’ve built so far,

1. look at all the edges that would join two fragments 
of the forest

2. pick the lowest-weight one and add it to the forest,
thereby joining two fragments

3. Assert: the forest we have so far is part of some 
minimum spanning tree

Repeat until we have a spanning tree.

PROOF OF CORRECTNESS (OUTLINE)
We can prove the assertion on line 3, using the 
“breakpoint” proof strategy plus some fiddly 
maths about trees. The final output is hence a 
minimum spanning tree.

page 45



43

1

2
9

6

5

7

8

d

b

f

e

c

a

EXERCISE. Run through the 
steps of Kruskal’s algorithm.

page 46

Kruskal’s algorithm in effect builds a 
classification tree; vertices connected by low-
weight edges become nearby leaves of the tree.



high similarity

low similarity

genome 𝑖

genome 𝑗

Similarity matrix



high similarity

low similarity

genome 𝑖

genome 𝑗

Similarity matrix



1
2
3
4
5
6
7
8
9
10
11
12
13

def kruskal(g):
tree_edges = []
partition = DisjointSet()
for v in g.vertices:

partition.addsingleton(v)
edges = sorted(g.edges, sortkey = 𝜆(u,v,weight): weight)

for (u,v,edgeweight) in g.edges:
p = partition.getsetwith(u)
q = partition.getsetwith(v)
if p != q:

tree_edges.append((u,v))
partition.merge(p, q)

KRUSKAL’S ALGORITHM
Given a forest we’ve built so far,

1. look at all the edges that would join two fragments 
of the forest

2. pick the lowest-weight one and add it to the tree,
thereby joining two fragments

3. Assert: the forest we have so far is part of some 
minimum spanning tree

Repeat until we have a spanning tree.

Don’t recompute these 
edges every iteration.

Just pre-sort the list of all 
edges, then iterate through and 
ignore those that are within-
fragment.

page 45



1
2
3
4
5
6
7
8
9
10
11
12
13

def kruskal(g):
tree_edges = []
partition = DisjointSet()
for v in g.vertices:

partition.addsingleton(v)
edges = sorted(g.edges, sortkey = 𝜆(u,v,weight): weight)

for (u,v,edgeweight) in g.edges:
p = partition.getsetwith(u)
q = partition.getsetwith(v)
if p != q:

tree_edges.append((u,v))
partition.merge(p, q)

The abstract data type DisjointSet stores 
a collection of disjoint sets, and supports

▪ addsingleton(v)
▪ p = getsetwith(v)
▪ merge(p,q)

page 46



QUESTION. How might we segment 
this image into “handsome stoat” 
and “background”?

depth-first search

breadth-first search

Dijkstra’s algorithm

Bellman-Ford algorithm

Johnson’s algorithm

Ford-Fulkerson algorithm

matchings

topological sort

Prim, Kruskal

dynamic programming

greedy algorithms

translation strategy



1. define a grid



2. measure dissimilarity along edges



3. run Kruskal’s algorithm, and 
stop when the forest it’s 

building has just a few trees



1. define a grid

Alternatively ...



2. measure dissimilarity along edges

Alternatively ...



3. ask the user to label some “stoat” 
points and some “background” points

Alternatively ...



4. set up a flow network

source
sink

Alternatively ...



5. find a minimum-capacity cut

source
sink

Alternatively ...


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33

