201/501Y.V1
(UK variant) 198

20H/
501Y.V2

20J/
501Y.V3
*20E (EU1)
20D o
A phylogenetic tree is a tree
representation of the evolutionary
20G .
history of a set of gene sequences
nextstrain.org 20 February 2021

e.g. COVID variants.

SECTIONS 6.5 and 6.6
Prim’s and Kruskal’s

algorithms

Given the similarity score between every pair of genomes, can we reconstruct a likely phylogenetic
tree? In other words, can we find a high-similarity tree embedded in the similarity graph?

Similarity matrix Similarity graph + subtree

genome i

genome j

= high similarity s high similarity — tree edges
H

B low similarity Lo
low similarity

3 °
4 7 N Fq N
Given a connected undirected graph g with edge ° . .

weights, 1 / 1 / 1 /
2
= A spanning tree of g is a tree that connects all of 2 2

[]
g’s vertices, using some or all of g’s edges

] . _ _ spanning not a spanning
= The welght of a spanning tree is the sum of all its tree, spanning tree tree,
edge weights weight 6 weight 6

= A minimum spanning tree (MST) is a spanning
tree that has minimum weight among all
spanning trees

Given such a graph, find a minimum spanning tree

dynamic programming
greedy algorithms

————
N

_E
translation strategy depth-first search

breadth-first search
Dijkstra’s algorithm
Bellman-Ford algorithm
Johnson’s algorithm

Ford-Fulkerson algorithm
matchings

topological sort
minimum spanning tree

page 42
®

Let’s build up a tree, edge by edge.

SIMPLE GREEDY ALGORITHM:
Which edge would you add
next, to grow the tree?

page 43

Choose an arbitrary start vertex as our initial tree.
Then, given a tree we’ve built so far,

1. look at the frontier of vertices we might add next,
and at the cut between our tree and those vertices

2. pick the lowest-weight edge across this cut,
and add it to the tree

3. Assert: the tree we have so far is part of some
minimum spanning tree

Repeat until we have a spanning tree.

We can prove the assertion on line 3, using the
“breakpoint” proof strategy plus some fiddly
maths about trees. The final output is hence a
minimum spanning tree.

def prim(g, s):
for v in g.v

page 43

PRIM’S ALGORITHM

ertices:

v.distance = co dis€ance from Eres fo 7\/

v.in_tree = False am I onFhe €reR yel . Choose an arbitrary start vertex as our initial tree.
s.come_from = None Then, given a tree we’ve built so far,
s.distance = 0
toexplore = PriorityQueue([s], sortkey = Av: v.distance) 1. look atth Pf vertices we might add next,

while not to
v = to
v.in_tre
for (w,

if

at the cut between our tree and those vé

explore.isempty():
in() 2. pick the lowest-weight edge across this cut,

e = Lrlc I . and add it to the tree
edgeweight) in v.neighbours:

3. Assert: the tree we have so far is part of some

(nojc w.in_tree) and. edgeweight < w.distance: minimum spanning tree
w.distance = edgeweight
w.come_from = v Repeat until we have a spanning tree.

if w in toexplore:
toexplore.decreasekey(w)
else:
toexplore.push(w)

Don’t recompute the
frontier every iteration.

Instead, store it &
update it.

def prim(g, s):
for v in g.vertices:
v.distance = oo
v.in_tree = False
s.come_from = None
s.distance = 0
toexplore = PriorityQueue([s], sortkey = Av: v.distance)

while not toexplore.isempty():
v = toexplore.popmin()
v.in_tree = True
for (w, edgeweight) in v.neighbours:

if (not w.in_tree) and edgeweight < w.distance:
w.distance = edgeweight
w.come_from = v
if w in toexplore:
toexplore.decreasekey(w)
else:
toexplore.push(w)

Gs¢ 0(E+V (Oj‘d

beceuvsg (r's b
e s o4 D:J B—G ¢la,

def dijkstra(g, s):
for v in g.vertices:
v.distance = oo

s.distance = 0
toexplore = PriorityQueue([s], sortkey = Av: v.distance)

while not toexplore.is_empty():
v = toexplore.popmin()

for (w,edgecost) in v.neighbours:
dist_w = v.distance + edgecost
if dist_w < w.distance:
w.distance = dist + w

if w in toexplore:
toexplore.decreasekey(w)
else:
toexplore.push(w)

@ page 45

Alternatively ...
Let’s build up a forest, edge by edge. PA)

SIMPLE GREEDY ALGORITHM:
Which edge would you add
next, to grow the forest?

KRUSKAL'S ALGORITHM

Given a forest we’ve built so far,

1. look at all the edges that would join two fragments
of the forest

2. pick the lowest-weight one and add it to the forest,
thereby joining two fragments

3. Assert: the forest we have so far is part of some
minimum spanning tree

Repeat until we have a spanning tree.

PROOF OF CORRECTNESS (OUTLINE)

We can prove the assertion on line 3, using the
“breakpoint” proof strategy plus some fiddly
maths about trees. The final output is hence a
minimum spanning tree.

page 45

_
.\\.—'\. / Y
NV
o T .\'

page 46

EXERCISE. Run through the

steps of Kruskal’s algorithm.

Similarity matrix &f sobmmifted coorsework

genogfe i

ey

B high similarity
[|
[|

B low similarity

)

3 resalloc.py 1.00/1.00 resalloc.py 1.00/1.00

7. D) 87"

|
|

4 resalloc.py 1.00/1.00 resalloc.py 1.00/1.00

|
!

v B Algorithms 1 2023-24 resalloc . X + = m} X
<« C 25 vlecam.ac.uk/mod/vpl/similarity/listsimilarity.php ¥ (‘a 2 O i | 0
Dashboard Courses v Find a course Categories v Help v About Moodle v Course History Q ®
Virtual programming lab Settings Test cases More v
resalloc
= Description i= Submissions list i Similarity A Test activity
i\ Similarity List of similarities found ‘
Cluster
First name / Last name Similar to
1 resalloc.py 1.00 / 1.00 ﬁ resalloc.py 1.00 / 1.00 1
2 resalloc.py 1.00/1.00 F4EE04e resalloc.py 1.00/1.00 2

Similarity matrix Jf sobowifted Coorse wark_

/(/\\A\ /?\-R N

qegem®)

studaimnt J

B high similarity
[|
[|

B low similarity

page 45

def kruskal(g):

KRUSKALS ALGORITHM tree_edges = []
) ,) partition = DisjointSet()
Given a forest we’ve built so far, for v in g.vertices:

partition.addsingleton(v)

1. look at all the edges that would join two fragments , ,
edges = sorted(g.edges, sortkey = A(u,v,weight): weight)

of the forest —

2. pick the lowest-weight one Qadd it to the tree, j o ¥, QEFENEATE) i (o Eiles: %
thereby joining two fragments 2 _ E:EEEQIEEEEEEES;

3. As.se;rt: the fores.t we have so far is part of some i ptll";ei.adges.append (W)
minimum spanning tree e TarEo, @)

Repeat until we have a spanning tree.

Don’t recompute these
edges every iteration.

Just pre-sort the list of all -)
edges, then iterate through and
ignore those that are within-
fragment.

| page 46

Toro ot e
OV +E=EeE) e Yotw
=o(V+€ (9 E) edgezaztigiriZ&?cgiéZ;giftzz.SZlZey = 2(u,v,weight): weight)
We've Msuth'j * ‘°“MCN°‘J'?L' for (u,v,edgeweight) in g.edges:»o\wlqjy‘
> Bl m VEEH o priton St 7\ 5) orabios
The ‘rﬂ’f’h CAM'I‘ howe move Fhan ‘;'\' (V'—') “lﬂ ! ptniej:aglges.append((u,v)) odr) i atiory
> E¢L -g\,(v-n) 2 (oJ E £2 leyv partition.merge(p, q) b

The abstract data type DisjointSet stores
a collection of disjoint sets, and supports

o (im= addsingleton(v)
ol = p = getsetwith(v)
Ay sw® merge(p,q)

'

QUESTION. How might we segment

this image into “handsome stoat”
and “background”?

dynamic programming
greedy algorithms
translation strategy

depth-first search
breadth-first search
Dijkstra’s algorithm
Bellman-Ford algorithm
Johnson’s algorithm

Ford-Fulkerson algorithm
matchings

topological sort

Prim, Kruskal

1. define a grid

ALATATAS]

LAY

s eREn e n 1

AATATA AT A EE AR A

m/\/u\‘/\"l\/\'l»

CarEN IS

AT ACATAYARRORD AR AT PAT A AT AYAYE
SISy

Srgegesayases Ve

,c,\,\,m'm_\/)mw-:,‘,W ;
RURR AR S

2

2. measure dissimilarity along edges

e
TREEN LS
[EE S EE s)

.......... ‘ XXX ’ PR ¥y : ¥) (R R R RN R
...... YATAY X . v ¢ ¥ YAYAY SATATAY e ek eey

...... - 4 » ./ ¥ . CRR R Y ' (A REERES & N J

b k F S8 0 8088

PR R L
LA ER S 5 R
‘e EERS S
-

3. run Kruskal’s algorithm, and
stop when the forest it’s
building has just a few trees

|
'r.'""v'xi"'a

AN sce s a e s e
ERE R AR SR

S S
S s e R e R s S R R R R R S R s

~

Alternatively

ALATATAS]

LAY

s eREn e n 1

AATATA AT A EE AR A

m/\/u\‘/\"l\/\'l»

CarEN IS

AT ACATAYARRORD AR AT PAT A AT AYAYE
SISy

Srgegesayases Ve

,c,\,\,m'm_\/)mw-:,‘,W ;
RURR AR S

2

1. define a grid

Alternatively ...

2. measure dissimilarity along edges

Alternatively ...

3. ask the user to label some “stoat”
points and some “background” points

Alternatively ...

4. set up a flow network

sinke
SOUrCE

O

O

Alternatively ...

5. find a minimum-capacity cut

Ay '(.'.'
...\l‘?\.\ (i

N

sinke
SOUrCE

O

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33

