

A phylogenetic tree is a tree representation of the evolutionary history of a set of gene sequences e.g. COVID variants.

SECTIONS 6.5 and 6.6 Prim's and Kruskal's algorithms

Given the similarity score between every pair of genomes, can we reconstruct a likely phylogenetic tree? In other words, can we find a high-similarity tree embedded in the similarity graph?

Similarity matrix

genome j

Similarity graph + subtree
\qquad

high similarity

DEFINITIONS

Given a connected undirected graph g with edge weights,

- A spanning tree of g is a tree that connects all of g 's vertices, using some or all of g 's edges
- The weight of a spanning tree is the sum of all its edge weights
- A minimum spanning tree (MST) is a spanning tree that has minimum weight among all spanning trees

PROBLEM STATEMENT

Given such a graph, find a minimum spanning tree

spanning tree, weight 6

not a
spanning tree

spanning tree, weight 6
dynamic programming greedy algorithms translation strategy
depth-first search
breadth-first search
Dijkstra's algorithm
Bellman-Ford algorithm
Johnson's algorithm

Ford-Fulkerson algorithm
matchings
topological sort
minimum spanning tree

Let's build up a tree, edge by edge.

SIMPLE GREEDY ALGORITHM:

Which edge would you add next, to grow the tree?

PRIM'S ALGORITHM

Choose an arbitrary start vertex as our initial tree.
Then, given a tree we've built so far,

1. look at the frontier of vertices we might add next, and at the cut between our tree and those vertices
2. pick the lowest-weight edge across this cut, and add it to the tree
3. Assert: the tree we have so far is part of some minimum spanning tree
Repeat until we have a spanning tree.

PROOF OF CORRECTNESS (OUTLINE)

We can prove the assertion on line 3, using the "breakpoint" proof strategy plus some fiddly maths about trees. The final output is hence a minimum spanning tree.
def $\operatorname{prim}(g, s)$:
for v in g.vertices:
$v . d i s t a n c e=\infty$ distance from tres to v
v.in_tree $=$ False am I in the eree yet?
s.come_from = None
s.distance $=0$
toexplore $=$ PriorityQueue([s], sortkey $=\lambda v$: v.distance)
while not toexplore.isempty():

v = toexplore.popmin()

v.in_tree $=$ True

for (w, edgeweight) in v.neighbours:
if (not w.in_tree) and edgeweight < w.distance:
w.distance = edgeweight
w.come_from = v
if w in toexplore:
toexplore.decreasekey(w) else:
toexplore.push(w)
Don't recompute the frontier every iteration.
Instead, store it \& update it.
def $\operatorname{prim}(g, s)$
for v in g.vertices:
v.distance $=\infty$
v.in_tree = False
s.come_from = None
s.distance $=0$
toexplore = PriorityQueue([s], sortkey = λv : v.distance)
while not toexplore.isempty():
v = toexplore.popmin()
v.in_tree = True
for (w, edgeweight) in v.neighbours:
if (not w.in_tree) and edgeweight < w.distance:
w.distance = edgeweight
w.come_from = v
if w in toexplore:
toexplore.decreasekey(w)
else:
toexplore.push(w)

Cost $O(E+V \log V)$

becaves ir's baxically the some as Dijhstra.

```
def dijkstra(g, s):
    for v in g.vertices:
        v.distance = \infty
    s.distance = 0
    toexplore = PriorityQueue([s], sortkey = \lambdav: v.distance)
    while not toexplore.is_empty():
        v = toexplore.popmin()
        for (w,edgecost) in v.neighbours:
        dist_w = v.distance + edgecost
        if dist_w < w.distance:
                w.distance = dist + w
                if w in toexplore:
                    toexplore.decreasekey(w)
                else:
                    toexplore.push(w)
```

Alternatively ...
Let's build up a forest, edge by edge.

SIMPLE GREEDY ALGORITHM:

Which edge would you add next, to grow the forest?

KRUSKAL'S ALGORITHM

Given a forest we've built so far,

1. look at all the edges that would join two fragments of the forest
2. pick the lowest-weight one and add it to the forest, thereby joining two fragments
3. Assert: the forest we have so far is part of some minimum spanning tree
Repeat until we have a spanning tree.

PROOF OF CORRECTNESS (OUTLINE)

We can prove the assertion on line 3 , using the "breakpoint" proof strategy plus some fiddly maths about trees. The final output is hence a minimum spanning tree.

Kruskal's algorithm in effect builds a classification tree; vertices connected by lowweight edges become nearby leaves of the tree.

EXERCISE. Run through the steps of Kruskal's algorithm.

Similarity matrix of submitted coursework

KRUSKAL'S ALGORITHM

Given a forest we've built so far,

1. look at all the edges that would join two fragments of the forest
2. pick the lowest-weight one and add it to the tree, thereby joining two fragments
3. Assert: the forest we have so far is part of some minimum spanning tree

Repeat until we have a spanning tree.

```
def kruskal(g):
    tree_edges = []
    partition = DisjointSet()
    for v in g.vertices:
        partition.addsingleton(v)
    edges = sorted(g.edges, sortkey = \lambda(u,v,weight): weight)
    for (u,v,edgeweight) in g.edges:
        p = partition.getsetwith(u)
        q = partition.getsetwith(v)
        if p != q:
            tree_edges.append((u,v))
            partition.merge(p, q)
```

Don't recompute these
edges every iteration.
Just pre-sort the list of all edges, then iterate through and ignore those that are withinfragment.

Total coss

$$
\begin{aligned}
& O(V+E+E \log E) \\
= & O(V+E \log E)
\end{aligned}
$$

we're assuming a connected graph

$$
\Rightarrow E \geqslant V-1 \Rightarrow V \leq E+1
$$

The graph cant have move than $\frac{1}{2} v(v-1)$ edges

$$
\Rightarrow E \leq \frac{1}{2} V(V-1) \Rightarrow \log E \leq 2 \log V
$$

So total cost is $O(E \log V)$.

The abstract data type DisjointSet stores a collection of disjoint sets, and supports

$$
\begin{aligned}
& O(1) \text { is h addsingleton }(v) \\
& O(1) \text { is } p=\operatorname{getsetwith}(v) \\
& O(1) \text { is } \operatorname{merge}(p, q)
\end{aligned}
$$

```
def kruskal(g):
    tree_edges = []
    partition = DisjointSet()
    for v in g.vertices:
    edges = sorted(g.edges, sortkey = \lambda(u,v,weight): weight)
    for (u,v,edgeweight) in g.edges:
        p = partition.getsetwith(u)
        q = partition.getsetwith(v)
        q = partiti
                lree_edges.append((u,v))
                lree_edges.append((u,v))
                                O(E|OJE)
                O(E) inerations
                O(1) ish operationy
```


QUESTION. How might we segment this image into "handsome stoat" and "background"?

dynamic programming greedy algorithms translation strategy
depth-first search breadth-first search

Dijkstra's algorithm
Bellman-Ford algorithm
Johnson's algorithm

Ford-Fulkerson algorithm
matchings
topological sort
Prim, Kruskal

2. measure dissimilarity along edges

\qquad

1．define a grid
Alternatively ．．．
（2）
Act
（ace
（acese

1．define a grid －
Wess
Wess

 （

\square S 1．define a grid

\qquad

\qquad

\qquad

 都

\qquad
\qquad
\qquad
\qquad

[^0]Fiffes

－ （asine a grid 1．define a grid
 8shisicshisic5

\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad （
都
\qquad
\qquad
\qquad

Alternatively ...
2. measure dissimilarity along edges

2. measure dissimilarity along edges

Alternatively ...

3. ask the user to label some "stoat"
points and some "background" points
(2)

Alternatively ...

4. set up a flow network
4. set up a flow network

$-$

[^1]
sink

\bigcirc

.

$\square$$\qquad$

Abstract

\square

 , $5(-2+2+2$

\uparrow

.
.$\longrightarrow \longrightarrow \longrightarrow$

.
都

Alternatively ...

5. find a minimum-capacity cut

sink

[^0]: ． 20－．，s
 0？

[^1]:

