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SECTION 6.4

Matchings



= A bipartite graph is an undirected graph in which
the vertices are split into two sets, and all edges
go between these sets

= A matching in a bipartite graph is a selection of
edges, such that no vertex is connected to more
than one of the edges

= The size of a matching is the number of edges it
includes

= A maximum matching is one with the largest
possible size

Given a bipartite graph, find a maximum matching
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0. Given a
bipartite graph ...
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1. Build a helper graph:

add source s and sink ¢
add edges from s andto ¢

2. Solve max-flow on the
helper graph, to find a
maximum flow [~

wtf 2!

This isntthe
sort of flow |
expected!

3. Interpret the flow
/" as a matching




The “Translation” strategy
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As well as specifying
the two translations,
we also need to prove
that this procedure
does indeed solve the
original problem!
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We used the translation strategy for finding the longest common
substring using dynamic programming.

common action-
substring’s sequence’s
length
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There’s a common pattern when applying the translation strategy to
optimization problems.
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The typical way we prove correctness is ...

CLAIM1. The optimal helper solution does translate
into a possible solution to the original problem

CLAIM2. This translation is optimal for the original
problem



max_flow
CLAIM1. Thefoptimal helper solution does translate

into d passible solution to the original QrQbIeﬁ! a Valid match v‘@

Ford-Fulkerson will produce an integer flow, since all
capacities are integer. Indeed, the flow on each edge must

be either O or 1:
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Thus, the capacity constraints tell us that, when we
translate f* into an edge selection, it meets the definition
of “matching”.
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CLAIMZ. This(t_,ransgﬁﬂm\?isp_,ptlmal for the original problem|

Suppose not, i.e. suppose the max flow f* translates to a matching
m*, but there exists a larger-size matching m'.

Note that when we translate matching < flow in the obvious way,
value(flow) = size(matching)

Since size(m') > size(mm”*), there is a flow f' whose value is strictly
greater than the value of f*. But this contradicts optimality of f*.
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For every problem where you propose using a “Translation” strategy, you have to
" invent the two translations
= prove that your translations satisfy these two claims
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King’s Cross
& St Pancras
International

Ex5qg6. A signal failure can prevent travel
in both directions between a pair of
adjacent stations. How many signal failures
it would take to prevent travel from Kings
Cross to Embankment?

Embankment



SECTION 6.7
Topological sort
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DEFINITION
Given a directed graph, a total ordering is an ordering of the vertices such
that if there is an edge v — u in the graph, then v < u in the ordering.

PROBLEM STATEMENT

Find a total ordering, if one exists.
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This graph has a cycle,
so there is no total
order possible.
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These are
interesting ideas,
worth pursuing. We'll
pursue one of them:
depth—first search,



def dfs_recurse(g, s):
for v in g.vertices:
v.visited = False
visit(s)

def visit(v):
v.visited = True
for w in v.neighbours:
if not w.visited:
visit(w)

attempt 1: depth-first search

This might not even
visit all vertices, so it
might not produce a
total order.



def dfs_recurse_all(g):
for v in g.vertices:
v.visited = False
for v in g.vertices:
if not v.visited:
visit(v)

def visit(v):
v.visited = True
for w in v.neighbours:
if not w.visited:
visit(w)

attempt 2: comprehensive depth-first search



def dfs_recurse_all(g):
for v in g.vertices:
v.visited = False
for v in g.vertices:
if not v.visited:
visit(v)

def visit(v):
v.visited = True
for w in v.neighbours:
if not w.visited:
visit(w)

attempt 2: comprehensive depth-first search

Some edges point
backwards - not a
total order.




def dfs_recurse_all(g):
for v in g.vertices:
v.visited = False
for v in g.vertices:
if not v.visited:
visit(v)

def visit(v):
v.visited = True

for w in v.neighbours:

if not w.visited:
visit(w)

attempt 2: comprehensive depth-first search

it(d)

dfs_recurse_all()

M § &5 orsendants

=

Flame Groph

visit (4 retuokg



def

def

toposort(g):
for v in g.vertices:
v.visited = False

totalorder =
for v in g.vertices:
if not v.visited:
visit(v, totalorder)
return totalorder

visit(v, totalorder):
v.visited = True

for w in v.neighbours:
if not w.visited:
visit(w, totalorder)
totalorder.append(v)

visit(b)
visit(a)

: dfs_recurse_all()

et afoveley = [

®

visit(f)

visit(c)

visit(e)

visit(d)

8]

visit(g)

visit(i)

visit(h)
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def toposort(g):
for v in g.vertices:
v.visited = False

totalorder = [] . . .
for v in g.vertices: Given a DAG g, this algorithm produces a

if not v.visited: totalorder such that for every edge v; — v,,
VISB, Botpresy v, appears to the right of v, in totalorder.

return totalorder

visit(v, totalorder):
v.visited = True

O i Vo lore: It has running time O(V + E), just like depth-first search.

if not w.visited:
visit(w, totalorder)
totalorder.append(v)

DAG = directed acyclic graph.

We've already seen that if there are cycles then it’s
impossible for there to be a total order.

The theorem tells us that the converse is also true:
if there aren’t any cycles then 3 a total order.



Correctness theorem. Given a DAG g, this algorithm returns a totalorder such that for every edge
v, = V,, totalorder has [+ v, - v - ].
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def toposort(g):
for v in g.vertices:

/—wppov\ob.d o &t ovday v.visited = False
veNtre ® e~ = = - -—LV'(’ k) ST T - totalorder = []
(Fﬁ:éﬂﬂk T f 7 for v in g.vertices:
if not v.visited:
e d if not v.
(Slov cslovre (Slovred black visit(v, totalorder)

hire re
W 9y return totalorder

def visit(v, totalorder):
v.visited = True

for w in v.neighbours:
if not w.visited:
visit(w, totalorder)
totalorder.append(v)
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An alternative approach to finding a total order

Preorders
Definition 139 Apreorder ( P, C ) consists of a set P and a relation
C onP (ie.C € P(P x P)) satisfying the following two axioms.

» Reflexivity.
VxeP. xCx
» Transitivity.
Vx,2y,z€P. xCy ANyLz) = xCz

Definition 140 A partial order, orposet®, is a preorder (P, C ) that
further satisfies

» Antisymmetry.

Vx,yeP.(xEy AyCx) = x=y

?(standing for partially ordered set)

Theorem 141 ForR C A x A, let

Jr = {QCAXA | RCQ A Qisapreorder} .
Then, (i) R** € Fy and (ii) R°* C [ Fr. Hence, R°* = () k.

Let x E y mean
“y depends on x”.

This is a partial order
(and the theorem explains
why partial orders
correspond to directed
acyclic graphs).

Mt‘7(~6 s ad (o an eH\m" P
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@ Tl b serred, amed £ edges @
M(MI-(‘W,

o SQfé(‘ﬁ Ajdrff-hwu anve O(Vz)OIG(V(y V)
® DFS-boyed &;Posaft s OCV+E)

* E vt

Se, on kn‘yl\& conrechec| qupﬁ_s, save vy
algonHwm s mriqit oo befter.

IDEA. Think through all our sorting algorithms, and/see
if they can be adapted to work with partial orders.
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