
depth-first search

breadth-first search

Dijkstra’s algorithm

Bellman-Ford algorithm

Johnson’s algorithm

Ford-Fulkerson algorithm

matchings

topological sort

Prim’s algorithm

Kruskal’s algorithm

dynamic programming

greedy algorithms

translation strategy

We are training to be algorithms chefs, not algorithms cooks

SECTION 6.4

Matchings

DEFINITIONS

▪ A bipartite graph is an undirected graph in which
the vertices are split into two sets, and all edges
go between these sets

▪ A matching in a bipartite graph is a selection of
edges, such that no vertex is connected to more
than one of the edges

▪ The size of a matching is the number of edges it
includes

▪ A maximum matching is one with the largest
possible size

PROBLEM STATEMENT
Given a bipartite graph, find a maximum matching

page 40

s t
1
1

1

1
1

1
1
1

1

1

1

1

1

0. Given a
bipartite graph ...

1. Build a helper graph:
• add source 𝑠 and sink 𝑡
• add edges from 𝑠 and to 𝑡

2. Solve max-flow on the
helper graph, to find a
maximum flow 𝑓∗

3. Interpret the flow
𝑓∗ as a matching

What’s the bug in
my thinking?

page 40

s t
1
1

1

1
1

1
1
1

1

1

1

1

1

wtf ?!
This isn’t the
sort of flow I
expected!

0. Given a
bipartite graph ...

1. Build a helper graph:
• add source 𝑠 and sink 𝑡
• add edges from 𝑠 and to 𝑡

2. Solve max-flow on the
helper graph, to find a
maximum flow 𝑓∗

3. Interpret the flow
𝑓∗ as a matching

so
lve

problem we
want to solve

helper
problem

solution

solution

As well as specifying
the two translations,
we also need to prove
that this procedure
does indeed solve the
original problem!

The “Translation” strategy

We used the translation strategy for finding the longest common
substring using dynamic programming.

problem we
want to solve

helper
problem

solution

solution

There’s a common pattern when applying the translation strategy to
optimization problems.

possible
solutions to
original problem

possible
solutions to
helper problem

*proof
needed

so
lu

ti
o

n
 v

al
u

e

so
lu

ti
o

n
 v

al
u

e

The typical way we prove correctness is ...

translate
the problem

translate
the solution

CLAIM1. The optimal helper solution does translate
into a possible solution to the original problem

CLAIM2. This translation is optimal for the original
problem

matchings flows

fl
o

w
 v

al
u

e

m
at

ch
in

g
si

ze

Ford-Fulkerson will produce an integer flow, since all
capacities are integer. Indeed, the flow on each edge must
be either 0 or 1:

Thus, the capacity constraints tell us that, when we
translate 𝑓∗ into an edge selection, it meets the definition
of “matching”.

Suppose not, i.e. suppose the max flow 𝑓∗ translates to a matching
𝑚∗, but there exists a larger-size matching 𝑚′.

Note that when we translate matching flow in the obvious way,
value(flow) = size(matching)

Since size 𝑚′ > size(𝑚∗), there is a flow 𝑓′ whose value is strictly
greater than the value of 𝑓∗. But this contradicts optimality of 𝑓∗.

*

CLAIM1. The optimal helper solution does translate
into a possible solution to the original problem

CLAIM2. This translation is optimal for the original problem

original helper

va
lu

e

va
lu

e

*

CLAIM1. The optimal helper solution does translate
into a possible solution to the original problem

CLAIM2. This translation is optimal for the original problem

For every problem where you propose using a “Translation” strategy, you have to
▪ invent the two translations (original problem → helper problem, helper solution → original solution)

▪ prove that your translations satisfy these two claims

Ex5q6. A signal failure can prevent travel

in both directions between a pair of

adjacent stations. How many signal failures

it would take to prevent travel from Kings

Cross to Embankment?

King’s Cross
& St Pancras
International

Embankment

SECTION 6.7

Topological sort

a d

b

c

q

p

r

DEFINITION
Given a directed graph, a total ordering is an ordering of the vertices such
that if there is an edge 𝑣 → 𝑢 in the graph, then 𝑣 < 𝑢 in the ordering.

PROBLEM STATEMENT
Find a total ordering, if one exists.

This graph has a cycle,
so there is no total
order possible.

page 47

depth-first search

breadth-first search

Dijkstra’s algorithm

Bellman-Ford algorithm

Johnson’s algorithm

Ford-Fulkerson algorithm

matchings

topological sort

Prim’s algorithm

Kruskal’s algorithm

dynamic programming

greedy algorithms

translation strategy

We are training to be algorithms chefs, not algorithms cooks

These are
interesting ideas,
worth pursuing. We’ll
pursue one of them:
depth-first search.

1
2
3
5
6
7
8
9
10
11

def dfs_recurse(g, s):
for v in g.vertices:

v.visited = False
visit(s)

def visit(v):
v.visited = True
for w in v.neighbours:

if not w.visited:
visit(w)

a

b c

d

e

f

g

i

h

attempt 1: depth-first search

This might not even
visit all vertices, so it
might not produce a
total order.

1
2
3
4
5
6
7
8
9
10
11
12

def dfs_recurse_all(g):
for v in g.vertices:

v.visited = False
for v in g.vertices:

if not v.visited:
visit(v)

def visit(v):
v.visited = True
for w in v.neighbours:

if not w.visited:
visit(w)

a

b c

d

e

f

g

i

h

attempt 2: comprehensive depth-first search

a

b c

d

e

f

g

i

h

a b c df

1
2
3
4
5
6
7
8
9
10
11
12

def dfs_recurse_all(g):
for v in g.vertices:

v.visited = False
for v in g.vertices:

if not v.visited:
visit(v)

def visit(v):
v.visited = True
for w in v.neighbours:

if not w.visited:
visit(w)

attempt 2: comprehensive depth-first search

Some edges point
backwards – not a
total order.

a

b c

d

e

f

g

i

h

visit(b)

visit(f)

visit(e)

visit(i)

visit(h)

visit(g)

visit(d)

visit(c)

visit(a)

dfs_recurse_all()

1
2
3
4
5
6
7
8
9
10
11
12

def dfs_recurse_all(g):
for v in g.vertices:

v.visited = False
for v in g.vertices:

if not v.visited:
visit(v)

def visit(v):
v.visited = True
for w in v.neighbours:

if not w.visited:
visit(w)

attempt 2: comprehensive depth-first search

a

b c

d

e

f

g

i

h

visit(b)

visit(f)

visit(e)

visit(i)

visit(h)

visit(g)

visit(d)

visit(c)

visit(a)

dfs_recurse_all()

1
2
3
4
5+
6
7
8
9+
10
11
12
13
14
15
16
17+
18

def toposort(g):
for v in g.vertices:

v.visited = False
v.colour = ‘white’

totalorder = []
for v in g.vertices:

if not v.visited:
visit(v, totalorder)

return totalorder

def visit(v, totalorder):
v.visited = True
v.colour = ‘grey’
for w in v.neighbours:

if not w.visited:
visit(w, totalorder)

totalorder.append(v)
v.colour = ‘black’

ab cdef g i h

page 48

1
2
3
4
5+
6
7
8
9+
10
11
12
13
14
15
16
17+
18

def toposort(g):
for v in g.vertices:

v.visited = False
v.colour = ‘white’

totalorder = []
for v in g.vertices:

if not v.visited:
visit(v, totalorder)

return totalorder

def visit(v, totalorder):
v.visited = True
v.colour = ‘grey’
for w in v.neighbours:

if not w.visited:
visit(w, totalorder)

totalorder.append(v)
v.colour = ‘black’

Correctness theorem.
Given a DAG 𝑔, this algorithm produces a
totalorder such that for every edge 𝑣1 → 𝑣2,
𝑣1 appears to the right of 𝑣2 in totalorder.

page 49

Performance analysis.
It has running time 𝑂(𝑉 + 𝐸), just like depth-first search.

DAG = directed acyclic graph.

We’ve already seen that if there are cycles then it’s
impossible for there to be a total order.

The theorem tells us that the converse is also true:
if there aren’t any cycles then ∃ a total order.

Correctness theorem. Given a DAG 𝑔, this algorithm returns a totalorder such that for every edge
𝑣1 → 𝑣2, totalorder has [⋯𝑣2⋯𝑣1⋯].

1
2
3
4
5+
6
7
8
9+
10
11
12
13
14
15
16
17+
18

def toposort(g):
for v in g.vertices:

v.visited = False
v.colour = ‘white’

totalorder = []
for v in g.vertices:

if not v.visited:
visit(v, totalorder)

return totalorder

def visit(v, totalorder):
v.visited = True
v.colour = ‘grey’
for w in v.neighbours:

if not w.visited:
visit(w, totalorder)

totalorder.append(v)
v.colour = ‘black’

An alternative approach to finding a total order

IDEA. Think through all our sorting algorithms, and see
if they can be adapted to work with partial orders.

Let 𝑥 ⊑ 𝑦 mean
“𝑦 depends on 𝑥”.
This is a partial order
(and the theorem explains
why partial orders
correspond to directed
acyclic graphs).

	Slide 1: We are training to be algorithms chefs, not algorithms cooks
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6: The “Translation” strategy
	Slide 7: We used the translation strategy for finding the longest common substring using dynamic programming.
	Slide 8: There’s a common pattern when applying the translation strategy to optimization problems.
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16: We are training to be algorithms chefs, not algorithms cooks
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25: An alternative approach to finding a total order

