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We are training to be algorithms chefs, not algorithms cooks



SECTION 6.4

Matchings



DEFINITIONS

▪ A bipartite graph is an undirected graph in which 
the vertices are split into two sets, and all edges 
go between these sets

▪ A matching in a bipartite graph is a selection of 
edges, such that no vertex is connected to more 
than one of the edges

▪ The size of a matching is the number of edges it 
includes

▪ A maximum matching is one with the largest 
possible size

PROBLEM STATEMENT
Given a bipartite graph, find a maximum matching
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0. Given a 
bipartite graph ...

1. Build a helper graph:
• add source 𝑠 and sink 𝑡
• add edges from 𝑠 and to 𝑡

2. Solve max-flow on the 
helper graph, to find a 
maximum flow 𝑓∗

3. Interpret the flow 
𝑓∗ as a matching

What’s the bug in 
my thinking?
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wtf ?!
This isn’t the 
sort of flow I 
expected!

0. Given a 
bipartite graph ...

1. Build a helper graph:
• add source 𝑠 and sink 𝑡
• add edges from 𝑠 and to 𝑡

2. Solve max-flow on the 
helper graph, to find a 
maximum flow 𝑓∗

3. Interpret the flow 
𝑓∗ as a matching
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problem we 
want to solve

helper 
problem

solution

solution

As well as specifying 
the two translations, 
we also need to prove 
that this procedure 
does indeed solve the 
original problem!

The “Translation” strategy



We used the translation strategy for finding the longest common 
substring using dynamic programming.



problem we 
want to solve

helper 
problem

solution

solution

There’s a common pattern when applying the translation strategy to 
optimization problems.

possible 
solutions to 
original problem

possible 
solutions to 
helper problem

*proof
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The typical way we prove correctness is ...

translate 
the problem

translate 
the solution

CLAIM1. The optimal helper solution does translate 
into a possible solution to the original problem

CLAIM2. This translation is optimal for the original 
problem
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Ford-Fulkerson will produce an integer flow, since all 
capacities are integer. Indeed, the flow on each edge must 
be either 0 or 1:

Thus, the capacity constraints tell us that, when we 
translate 𝑓∗ into an edge selection, it meets the definition 
of “matching”.

Suppose not, i.e. suppose the max flow 𝑓∗ translates to a matching 
𝑚∗, but there exists a larger-size matching 𝑚′.

Note that when we translate matching  flow in the obvious way,
value(flow) = size(matching)

Since size 𝑚′ > size(𝑚∗), there is a flow 𝑓′ whose value is strictly 
greater than the value of 𝑓∗. But this contradicts optimality of 𝑓∗.

*

CLAIM1. The optimal helper solution does translate 
into a possible solution to the original problem

CLAIM2. This translation is optimal for the original problem
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*

CLAIM1. The optimal helper solution does translate 
into a possible solution to the original problem

CLAIM2. This translation is optimal for the original problem

For every problem where you propose using a “Translation” strategy, you have to
▪ invent the two translations (original problem → helper problem, helper solution → original solution)

▪ prove that your translations satisfy these two claims





Ex5q6. A signal failure can prevent travel 

in both directions between a pair of 

adjacent stations. How many signal failures 

it would take to prevent travel from Kings 

Cross to Embankment?

King’s Cross 
& St Pancras 
International

Embankment



SECTION 6.7

Topological sort
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DEFINITION
Given a directed graph, a total ordering is an ordering of the vertices such 
that if there is an edge 𝑣 → 𝑢 in the graph, then 𝑣 < 𝑢 in the ordering.

PROBLEM STATEMENT
Find a total ordering, if one exists.

This graph has a cycle, 
so there is no total 
order possible.
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depth-first search

breadth-first search
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Ford-Fulkerson algorithm

matchings
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dynamic programming
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translation strategy

We are training to be algorithms chefs, not algorithms cooks

These are 
interesting ideas, 
worth pursuing. We’ll 
pursue one of them: 
depth-first search.
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def dfs_recurse(g, s):
for v in g.vertices:

v.visited = False
visit(s)

def visit(v):
v.visited = True
for w in v.neighbours:

if not w.visited:
visit(w)
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h

attempt 1: depth-first search

This might not even 
visit all vertices, so it 
might not produce a 
total order.
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def dfs_recurse_all(g):
for v in g.vertices:

v.visited = False
for v in g.vertices:

if not v.visited:
visit(v)

def visit(v):
v.visited = True
for w in v.neighbours:

if not w.visited:
visit(w)
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attempt 2: comprehensive depth-first search
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def dfs_recurse_all(g):
for v in g.vertices:

v.visited = False
for v in g.vertices:

if not v.visited:
visit(v)

def visit(v):
v.visited = True
for w in v.neighbours:

if not w.visited:
visit(w)

attempt 2: comprehensive depth-first search

Some edges point 
backwards – not a 
total order.
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visit(b)

visit(f)

visit(e)

visit(i)

visit(h)

visit(g)

visit(d)

visit(c)

visit(a)

dfs_recurse_all()
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def dfs_recurse_all(g):
for v in g.vertices:

v.visited = False
for v in g.vertices:

if not v.visited:
visit(v)

def visit(v):
v.visited = True
for w in v.neighbours:

if not w.visited:
visit(w)

attempt 2: comprehensive depth-first search
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visit(b)

visit(f)

visit(e)

visit(i)

visit(h)

visit(g)

visit(d)

visit(c)

visit(a)

dfs_recurse_all()
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def toposort(g):
for v in g.vertices:

v.visited = False
# v.colour = ‘white’

totalorder = []
for v in g.vertices:

if not v.visited:
visit(v, totalorder)

return totalorder

def visit(v, totalorder):
v.visited = True
# v.colour = ‘grey’
for w in v.neighbours:

if not w.visited:
visit(w, totalorder)

totalorder.append(v)
# v.colour = ‘black’

ab cdef g i h
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def toposort(g):
for v in g.vertices:

v.visited = False
# v.colour = ‘white’

totalorder = []
for v in g.vertices:

if not v.visited:
visit(v, totalorder)

return totalorder

def visit(v, totalorder):
v.visited = True
# v.colour = ‘grey’
for w in v.neighbours:

if not w.visited:
visit(w, totalorder)

totalorder.append(v)
# v.colour = ‘black’

Correctness theorem.
Given a DAG 𝑔, this algorithm produces a 
totalorder such that for every edge 𝑣1 → 𝑣2, 
𝑣1 appears to the right of 𝑣2 in totalorder.
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Performance analysis.
It has running time 𝑂(𝑉 + 𝐸), just like depth-first search.

DAG = directed acyclic graph.

We’ve already seen that if there are cycles then it’s 
impossible for there to be a total order.

The theorem tells us that the converse is also true: 
if there aren’t any cycles then ∃ a total order.



Correctness theorem. Given a DAG 𝑔, this algorithm returns a totalorder such that for every edge 
𝑣1 → 𝑣2, totalorder has [⋯𝑣2⋯𝑣1⋯].
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def toposort(g):
for v in g.vertices:

v.visited = False
# v.colour = ‘white’

totalorder = []
for v in g.vertices:

if not v.visited:
visit(v, totalorder)

return totalorder

def visit(v, totalorder):
v.visited = True
# v.colour = ‘grey’
for w in v.neighbours:

if not w.visited:
visit(w, totalorder)

totalorder.append(v)
# v.colour = ‘black’





An alternative approach to finding a total order

IDEA. Think through all our sorting algorithms, and see 
if they can be adapted to work with partial orders.

Let 𝑥 ⊑ 𝑦 mean 
“𝑦 depends on 𝑥”. 
This is a partial order 
(and the theorem explains 
why partial orders 
correspond to directed 
acyclic graphs).
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