We are training to be algorithms chefs, not algorithms cooks

dynamic programming
greedy algorithms

translation strategy depth-first search

breadth-first search =% frev eV

] ’ [I'on,
Dijkstra’s algorith ? edse re laaod
Bellman-Ford algorithm
Johnson’s algorithm

Ford-Fulkerson algorithm
matchings

topological sort

Prim’s algorithm
Kruskal’s algorithm

SECTION 6.4

Matchings

= A bipartite graph is an undirected graph in which
the vertices are split into two sets, and all edges
go between these sets

= A matching in a bipartite graph is a selection of
edges, such that no vertex is connected to more
than one of the edges

= The size of a matching is the number of edges it
includes

= A maximum matching is one with the largest
possible size

Given a bipartite graph, find a maximum matching

page 40

page 40

i
/\

v-

<A
/
Vi
A
/ \
/N

0. Given a 1. Build a helper graph: 2. Solve max-flow on the 3. Interpret the flow
bipartite graph ... * addsource s and sink t helper graph, to find a f* as a matching
* addedgesfromsandtot maximum flow [~

What’s the bug in

my thinking?

0. Given a
bipartite graph ...

1— “-.

- 1
N)
..... 1 » 1 “““““““ \ 4
1. 1 .

4
\1\ 1

1. Build a helper graph:

add source s and sink ¢
add edges from s andto ¢

2. Solve max-flow on the
helper graph, to find a
maximum flow [~

wtf 2!

This isntthe
sort of flow |
expected!

3. Interpret the flow
/" as a matching

The “Translation” strategy

t/‘an
the

Slate
:O/‘O b /an

As well as specifying
the two translations,
we also need to prove
that this procedure
does indeed solve the
original problem!

9A|0S

|
|
|
|
|
|
|
|
|
|
|
|
\4

We used the translation strategy for finding the longest common
substring using dynamic programming.

common action-
substring’s sequence’s
length

4/ HEIM |

There’s a common pattern when applying the translation strategy to
optimization problems.

translate possible possible

n
n
»

o5
O

o® 'YY
e

proof
needed

JCElENREE the problem solutions to solutions to
want to solve original problem helper problem
| helper
I problem
]

v

I
‘ /@
w translate

the solution

solution value
solution value

The typical way we prove correctness is ...

CLAIM1. The optimal helper solution does translate
into a possible solution to the original problem

CLAIM2. This translation is optimal for the original
problem

max_flow
CLAIM1. Thefoptimal helper solution does translate

into d passible solution to the original QrQbIeﬁ! a Valid match v‘@

Ford-Fulkerson will produce an integer flow, since all
capacities are integer. Indeed, the flow on each edge must

be either O or 1:
, 1 / 1 ,"‘ \l
Loy O — s
STTOS Lo

/

Thus, the capacity constraints tell us that, when we
translate f* into an edge selection, it meets the definition
of “matching”.

-

: W\ad.‘c(/\" A WX 502 Mm(m‘vw,
CLAIMZ. This(t_,ransgﬁﬂm\?isp_,ptlmal for the original problem|

Suppose not, i.e. suppose the max flow f* translates to a matching
m*, but there exists a larger-size matching m'.

Note that when we translate matching < flow in the obvious way,
value(flow) = size(matching)

Since size(m') > size(mm”*), there is a flow f' whose value is strictly
greater than the value of f*. But this contradicts optimality of f*.

matchings

A

matching size

\

o=

flow valte

original helper

E =P
e o®
Qo
O YY

For every problem where you propose using a “Translation” strategy, you have to
" invent the two translations
= prove that your translations satisfy these two claims

West Northwick gy VT iLkEwuRU s, Tottenham
\ Harrow Park ,3')/ Dollis Hill . Golders Green
b H South Kenton I Wembley Park lesden G Upper Holloway
Jth Harrow = Willesden Green || \yest Hampstead Tufnell ——
North Wemble .
/ I Kilburn i ?ﬁgnnp%ei?‘ﬂ —— Park 4 Arsenal_gb& Finsbury
= Wembley Central (&) West " Hampstead @ Kentish {§ Kentish Park 2=
) | Hampstead , - Heath 1 Town Town Holloway Road
udbury Hill = Sonebridge Park) @ West 4 .
I Kensal Brondesbury RS o~ '\ v Caledonian
Harlesden Rise Park #* Finchley Road Belsize Park’ Camden Road __
| @ = = o &Frognal Road - 3 gllghbuwi Dalston
bury Town (2 Willesden Junction (&) Brondesbury o Chalk Farm! . ington Klngsland Hackney
| 1 9); 6 Hackney
I Kensal Green . Camden Town ' Caligdgrgan \Downs Central
(") Queen's Park Kilbum Finchley Road King's Cross a Canonbu \
Alpertons ngh_ROBd . South Hampstead Mornington g ngPancras ! Bamsbury o
5 Crescent International Dalston Junct|on
‘.SNiSS Cottage = @ - London Fields T
) " Haggerston (&) .
Kilbum Park = Paddington Edgware Road Marylebone = < John's Wood == Euston (@)=t =) ,’/EJ I Cambridge Heath
. \a .
(i Maida Vale . ey 7 Pl 7 Hoxton (&) Bethnal Green
warw'lck @ 3 Angel
venue /) — \)
€ o Great Portland Euston Mg N () Old Street = Bethnal Green Mile Fnd
R%v;gre Baker Street Sreet Square () Warren)
Royal Oak Shoreditch g8
High Street &
Westboume Park & Sepney Green
33— -
v
- Ladbroke Grove F - Bayswater Z/ Aldgate
_ Bond Street ff) \ @ === East @ Whitechapel [o
: =~ Latimer Road - & City ()
orth Ealing <) Thamesllnk
East White Shepherd’s Notti Marole Arch Jottenham Chancery Langdon F
" ottin
Acton City Bush = Hill Ga'?e Court Road Lane _
" e z) @ r—— 5 Iéaréoaster Covent Garden O ‘ All sa
i est o *, : ol lan ueensway ate 7 P
Brggltl:lr:\?ay Acton Acton Wood Lane @ Park B o Leicester Square 4 S Paul's Limehouse= p
Hyde Park Come
= Shepherd'’s & y Piccadilly] == Cannon Street () o+
Acton Central Bush Market ™ = k- High Sreet Kensington Circus Tow_er: e, & Shadwell Wesgen'y
 Common{ Kensington) %, Mansion Hill Tower I
South Acton Goldhawk Road b Olympia) QA& Knightsbridge = Charing () v, House Gateway [k wapping T West In
m| ross
B » E—% Q
%ﬁjﬁh Hammersmith = E(E:amgs i Glo'gggdster = = River Thames
g : ou H . Uictora) Westminster 6} Tem o Blackfriars g e =7
: e E-)' £ - P o Loncon > Rotherhithe - can
L J =) =
wick Tlérr;harpf_ S:ar.lr)fokrd Ravepn'srfl:furt Ke West Earl’s South Soane s JaFers‘s : ., En'ban kment c..) !
Gl reen 0 al nsington Court Kensington ~ Square s Canada
on Manor Bermondsey e Heron Qui
- @, N
- g7
st C Gunnersbury == West Brompton (&) Watedg fi‘)".i. South Q
1
; Crossharbx
l — Q Pimlicos =) % I Surrey Quays
Southwark h
(‘5 Kew Gardens Hew Y % Borough ol Mudchu
I Fulham Broadway (3] Lambeth 4 . Deptford Tsland Gardl
Parsons Green Imperial Wharf North 4 Ry \
e - - - - @l -
Putney Bridge #C S N
= foand / A

King’s Cross
& St Pancras
International

Ex5qg6. A signal failure can prevent travel
in both directions between a pair of
adjacent stations. How many signal failures
it would take to prevent travel from Kings
Cross to Embankment?

Embankment

SECTION 6.7
Topological sort

Copy of FREE BASIC_AMZN P&Lxlsx -... 02 Damon Wischik t_ &= = O X

File Insert Draw Page Layout Formulas Data Review View Help 13 Share 11 Comments

Home
—

#NAME?

Seller ID1

Period 1

Marketplace 1

SKU/ASIN 1 h

Last

Consolidated Income - Amazon
Sales

Discounis/Promotio
AmazonReimburserme

Shipping
Income-©the
Amazon %encling

Total Income
COGS

Gross Profit
Gross Margin

Consolidated Expenses - Amazon
Amazon¥ee

Operating Profit
Operating Margin

DETAILED Income - Amazon
Sales
Selling prite

Discou
Promo Re¥ate

Promaotior s oAy

DASH P&L | P&L.D

r
. L4
AT, P&L _CA

TEGORY

#NAME?

entertheSellerlD

ear

DEFAULT

#DIV/0!

_Last-Year
000

ENAME?

——

& conditional Formatting v

@ Format as Table ¥

[iZ cell s

Seller ID2
Period 2
Marketplace 2
SKU/ASIN 2

Total Income
COGS

Gross Profit
Gross Margin

Operating Profit
Operating Margin

romotion®

product_details

&Hinsert ~ >~ 2 v
X Delete v - v
@Fcrma‘r v '<\ v

Is Editing

entertheSellerlD
2019&4
DEFAULT

2019Q4
0.00
0.00
0.00
0.00
0.00
0.00

0.00
0.00

0.00
#DIV/0!

2019Q4
0.00

0.00
#DIV/0!

2019Q4
0.00
#NAME?

#NAME?
#MAMF?

k4

DEFINITION
Given a directed graph, a total ordering is an ordering of the vertices such
that if there is an edge v — u in the graph, then v < u in the ordering.

PROBLEM STATEMENT

Find a total ordering, if one exists.

@ a L _/WCJ
e—»o/l
> VR
b c a d
\’_/V

page 47

This graph has a cycle,
so there is no total
order possible.

We are training to be algorithms chefs, not algorithms cooks

dynamic programming
greedy algorithms
translation strategy

heap

depth-first search
breadth-first search

Dijkstra’s algorithm

Bellman-Ford algorithm

Johnson’s algorithm

Ford-Fulkerson algorithm

matchings
topological sort
Prim’s algorithm
Kruskal’s algorithm

i

-

These are
interesting ideas,
worth pursuing. We'll
pursue one of them:
depth—first search,

def dfs_recurse(g, s):
for v in g.vertices:
v.visited = False
visit(s)

def visit(v):
v.visited = True
for w in v.neighbours:
if not w.visited:
visit(w)

attempt 1: depth-first search

This might not even
visit all vertices, so it
might not produce a
total order.

def dfs_recurse_all(g):
for v in g.vertices:
v.visited = False
for v in g.vertices:
if not v.visited:
visit(v)

def visit(v):
v.visited = True
for w in v.neighbours:
if not w.visited:
visit(w)

attempt 2: comprehensive depth-first search

def dfs_recurse_all(g):
for v in g.vertices:
v.visited = False
for v in g.vertices:
if not v.visited:
visit(v)

def visit(v):
v.visited = True
for w in v.neighbours:
if not w.visited:
visit(w)

attempt 2: comprehensive depth-first search

Some edges point
backwards - not a
total order.

def dfs_recurse_all(g):
for v in g.vertices:
v.visited = False
for v in g.vertices:
if not v.visited:
visit(v)

def visit(v):
v.visited = True

for w in v.neighbours:

if not w.visited:
visit(w)

attempt 2: comprehensive depth-first search

it(d)

dfs_recurse_all()

M § &5 orsendants

=

Flame Groph

visit (4 retuokg

def

def

toposort(g):
for v in g.vertices:
v.visited = False

totalorder =
for v in g.vertices:
if not v.visited:
visit(v, totalorder)
return totalorder

visit(v, totalorder):
v.visited = True

for w in v.neighbours:
if not w.visited:
visit(w, totalorder)
totalorder.append(v)

visit(b)
visit(a)

: dfs_recurse_all()

et afoveley = [

®

visit(f)

visit(c)

visit(e)

visit(d)

8]

visit(g)

visit(i)

visit(h)

page 48

00 |

def toposort(g):
for v in g.vertices:
v.visited = False

totalorder = [] . . .
for v in g.vertices: Given a DAG g, this algorithm produces a

if not v.visited: totalorder such that for every edge v; — v,,
VISB, Botpresy v, appears to the right of v, in totalorder.

return totalorder

visit(v, totalorder):
v.visited = True

O i Vo lore: It has running time O(V + E), just like depth-first search.

if not w.visited:
visit(w, totalorder)
totalorder.append(v)

DAG = directed acyclic graph.

We've already seen that if there are cycles then it’s
impossible for there to be a total order.

The theorem tells us that the converse is also true:
if there aren’t any cycles then 3 a total order.

Correctness theorem. Given a DAG g, this algorithm returns a totalorder such that for every edge
v, = V,, totalorder has [+ v, - v -].

P,fﬁ Fioest, tha O\Ja?""l\MM must revminsde (becow 56 how o+ ves (e 'vigt ek f{"*j-)
(We howe te preve Eerm inet ton fwsé. ff e olereq it feyminedre iF cott retudn vam‘\uj ’()

Nexe, we prove rhe claiw Vsiug the " breakporunt” %m'be?j’ We'll el crponve " vexrex eSlours’, ay set

i e comwen of e code L Tl cdouts ame o ey 1 ekprss " whot hoy happeied i fhe peyt"

(\ \ I
Ferms JF cslovs JF Fhe Vernees r‘ﬁ'M new . Tey]usé o Sowe V¢ me civeomlocvbian,

def toposort(g):
for v in g.vertices:

/—wppov\ob.d o &t ovday v.visited = False
veNtre ® e~ = = - -—LV'(’ k) ST T - totalorder = []
(Fﬁ:éﬂﬂk T f 7 for v in g.vertices:
if not v.visited:
e d if not v.
(Slov cslovre (Slovred black visit(v, totalorder)

hire re
W 9y return totalorder

def visit(v, totalorder):
v.visited = True

for w in v.neighbours:
if not w.visited:
visit(w, totalorder)
totalorder.append(v)

/—adppu/ldad o Csted ovday

vexte x L ——“‘_Lva‘sl‘i-(\/) e P
[TFetrun 4 ‘r 7
WLNN (j”‘:_‘j CJ(CV"QGQ b(&CL

od comgreler (he cusfemt thar v, 7%‘
wWhot (Slouv @\/Zf

Prce am onbilr eaL;L v —v V3,
colov veck ‘Yﬂfj (T mvsé 61‘70/0:44 Ak se Po/‘vd’ ‘n »€)<.¢(u(-"ovn\~
g 1? VZ X3 b(“(hi Hhein \/2 e a/ﬂ&@& w hﬂ‘qj d\fol,u/l %
e f‘ vV, 18 whire: (hen V, AM nSt r{- becen Visiheel

Ity o ol_e_sae_V\o&M/{'«SF v, s visif (Vy) will be tvvohed amd terminabe

(M—"wv visiE (v) Ferminedres s V, <V, M Ftal ovddev /

vV, <V, \/

° q vV, G jfﬁj, tan V3t(%) hag ghoyed l/;—
9 rsit (V1)

bot wnst 7,(,{; Fexuninedrecd . n‘«'/"‘e/’wt v, Must‘éc P

a descencdemt &V, (ol Hre (Icuvu 774705: relly ——

v$ & Pd\‘Hfl V, "y \/,) .
Boe v, —v, by assuphian, hoine Fhuerel a 7(%/

whith conbvadic or DAG wsuvv\p/‘v‘a/l. %

An alternative approach to finding a total order

Preorders
Definition 139 Apreorder (P, C) consists of a set P and a relation
C onP (ie.C € P(P x P)) satisfying the following two axioms.

» Reflexivity.
VxeP. xCx
» Transitivity.
Vx,2y,z€P. xCy ANyLz) = xCz

Definition 140 A partial order, orposet®, is a preorder (P, C) that
further satisfies

» Antisymmetry.

Vx,yeP.(xEy AyCx) = x=y

?(standing for partially ordered set)

Theorem 141 ForR C A x A, let

Jr = {QCAXA | RCQ A Qisapreorder} .
Then, (i) R** € Fy and (ii) R°* C [Fr. Hence, R°* = () k.

Let x E y mean
“y depends on x”.

This is a partial order
(and the theorem explains
why partial orders
correspond to directed
acyclic graphs).

Mt‘7(~6 s ad (o an eH\m" P
a\bjdn‘HAM.? I} we heve V venhes
@ Tl b serred, amed £ edges @
M(MI-(‘W,

o SQfé(‘ﬁ Ajdrff-hwu anve O(Vz)OIG(V(y V)
® DFS-boyed &;Posaft s OCV+E)

* E vt

Se, on kn‘yl\& conrechec| qupﬁ_s, save vy
algonHwm s mriqit oo befter.

IDEA. Think through all our sorting algorithms, and/see
if they can be adapted to work with partial orders.

	Slide 1: We are training to be algorithms chefs, not algorithms cooks
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6: The “Translation” strategy
	Slide 7: We used the translation strategy for finding the longest common substring using dynamic programming.
	Slide 8: There’s a common pattern when applying the translation strategy to optimization problems.
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16: We are training to be algorithms chefs, not algorithms cooks
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25: An alternative approach to finding a total order

