
SECTION 6.3

Max-flow min-cut

ORIGINS

ORIGINS

EG

The
Bottleneck

ORIGINS

ORIGINS

EG

The
Bottleneck

ORIGINS

ORIGINS

EG

The
Bottleneck

ORIGINS

ORIGINS

EG

The
Bottleneck

Total capacity
163 trains/day

Total capacity
228
trains/day

Total capacity
276 trains/day

𝑡𝑏

𝑎

𝑠

𝑐

cap. 3 cap. 4

𝑡
𝑏

𝑎
𝑠

𝑐

A cut is a partition of the vertices into two sets,
𝑉 = 𝑆 ∪ ҧ𝑆, with the source vertex 𝑠 ∈ 𝑆 and
the sink vertex 𝑡 ∈ ҧ𝑆.

The capacity of the cut is

capacity 𝑆, ҧ𝑆 =

𝑢∈𝑆, 𝑣∈ ҧ𝑆∶
𝑢→𝑣

𝑐(𝑢 → 𝑣)

MAX-FLOW MIN-CUT THEOREM
For any flow 𝑓 and any cut (𝑆, ҧ𝑆),

value 𝑓 ≤ capacity(𝑆, ҧ𝑆)

𝑆

ҧ𝑆

capacity
of a cut

value of
a flow

cut (𝐴, ҧ𝐴)

cut (𝐵, ത𝐵)

cut (𝐶, ҧ𝐶)

flow 𝑗

flow ℎ

flow 𝑖

MAX-FLOW MIN-CUT THEOREM
For any flow 𝑓 and any cut (𝑆, ҧ𝑆),

value 𝑓 ≤ capacity(𝑆, ҧ𝑆)

capacity
of a cut

value of
a flow

cut (𝐴, ҧ𝐴)

cut (𝐵, ത𝐵)

cut (𝐶, ҧ𝐶)

flow 𝑗

flow ℎ

flow 𝑖

flow 𝑓∗, cut 𝑆∗, 𝑆∗

FORD-FULKERSON CLAIM
The Ford-Fulkerson algorithm, if it terminates,
finds a flow 𝑓∗ and a cut (𝑆∗, 𝑆∗) such that

value 𝑓∗ = capacity(𝑆∗, 𝑆∗)

An illustration of the Max-Flow Min-Cut Theorem

PROOF STRATEGY

Write out the flow conservation
equations for each vertex in 𝑆 ∖ {𝑠},
and sum them. Then use

0 ≤ flow ≤ capacity

MAX-FLOW MIN-CUT THEOREM. For any flow 𝑓 and any cut (𝑆, ҧ𝑆), value 𝑓 ≤ capacity(𝑆, ҧ𝑆)

Important bits of the proof:

This is how we’ll prove the Ford-Fulkerson claim:
We’ll demonstrate a flow 𝑓∗ and a cut (𝑆∗, 𝑆∗)
such that all edges 𝑆∗ → 𝑆∗ have zero flow, and
all edges 𝑆∗ → 𝑆∗ are at capacity.

𝑡𝑏

𝑎

𝑠

𝑐

cap. 3 cap. 4

𝑡𝑏

𝑎

𝑠

𝑐

WALKTHROUGH OF FORD-FULKERSON

inc b→tinc s→b

δ=4

A flow network

The residual
graph

An augmenting
path

𝑡𝑏

𝑎

𝑠

𝑐

0 /3 4 /4

𝑡𝑏

𝑎

𝑠

𝑐

WALKTHROUGH OF FORD-FULKERSON

δ=8

inc s→b

dec b→t

𝑡𝑏

𝑎

𝑠

𝑐

0 /3 4 /4

𝑡𝑏

𝑎

𝑠

𝑐

WALKTHROUGH OF FORD-FULKERSON

δ=2

𝑡𝑏

𝑎

𝑠

𝑐

2 /3 4 /4

𝑡𝑏

𝑎

𝑠

𝑐

WALKTHROUGH OF FORD-FULKERSON

vertices
reachable from s

We cannot find an augmenting path in the residual graph. So, terminate.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
18
19
20
21
22
23
24
25
26
33
39

def ford_fulkerson(𝑔, 𝑠, 𝑡):
Let 𝑓 be a flow, initially empty
for 𝑢 → 𝑣 in g.edges:

𝑓(𝑢 → 𝑣) = 0

Define a helper function for finding an augmenting path
def find_augmenting_path():

Define the residual graph ℎ on the same vertices as 𝑔
for 𝑢 → 𝑣 in 𝑔.edges:

if 𝑓 𝑢 → 𝑣 < 𝑐(𝑢 → 𝑣): give ℎ an edge 𝑢 → 𝑣 labelled “inc 𝑢 → 𝑣”
if 𝑓 𝑢 → 𝑣 > 0: give ℎ an edge 𝑣 → 𝑢 labelled “dec 𝑢 → 𝑣”

if ℎ has a path from 𝑠 to 𝑡:
return some such path, together with the labels of its edges

else:

Let 𝑆 be the set of vertices reachable from 𝑠 (used in the proof)
return None

Repeatedly find an augmenting path and add flow to it
while True:

p = find_augmenting_path()
if p is None:

break
else:

compute 𝛿, the amount of flow to apply along p, and apply it
Assert: 𝛿 > 0
Assert: 𝑓 is still a valid flow

𝑡𝑏

𝑎

𝑠

𝑐 vertices
reachable from s

FORD-FULKERSON CLAIM
The Ford-Fulkerson algorithm, if it terminates, finds a flow 𝑓∗ and a cut (𝑆∗, 𝑆∗) such that value 𝑓∗ = capacity(𝑆∗, 𝑆∗)

capacity
of a cut

value of
a flow

cut (𝐴, ҧ𝐴)

cut (𝐵, ത𝐵)

cut (𝐶, ҧ𝐶)

flow 𝑗

flow ℎ

flow 𝑖

flow 𝑓∗, cut 𝑆∗, 𝑆∗

❖ The Ford-Fulkerson algorithm produces both a flow
and a cut; and the cut acts as a certificate of optimality
for the flow.

❖ Many other optimization algorithms also produce a
(solution, certificate) pair. The certificate corresponds
to the dual variables in Lagrangian optimization.

edge weights 𝜃

random
noise 𝑍

𝑋 = 𝑓𝜃(𝑍)

A latent generative model is a neural network that has been trained to map a random
noise vector into something that resembles items from the training dataset.

A latent generative model is a neural network that has been trained to map a random
noise vector into something that resembles items from the training dataset.

edge weights 𝜃

random
noise 𝑍

𝑋 = 𝑓𝜃(𝑍)

edge weights 𝜙

𝑥 𝑌 = 𝑔𝜙 𝑥 ∈ {real, fake}

An adversary is a neural network that guesses whether an input 𝑥 is real (i.e. from the
training dataset) or fake (i.e. generated by us).

We can train a good generator by simultaneously training an adversary. When we’ve
finished training, the adversary should be unable to detect whether a given 𝑥 is real
or fake. The adversary is a certificate that our generator is good.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9: An illustration of the Max-Flow Min-Cut Theorem
	Slide 10
	Slide 11
	Slide 12: WALKTHROUGH OF FORD-FULKERSON
	Slide 13: WALKTHROUGH OF FORD-FULKERSON
	Slide 14: WALKTHROUGH OF FORD-FULKERSON
	Slide 15: WALKTHROUGH OF FORD-FULKERSON
	Slide 16
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22

