SECTION 6.3 Max-flow min-cut

A **cut** is a partition of the vertices into two sets, $V = S \cup \overline{S}$, with the source vertex $s \in S$ and the sink vertex $t \in \overline{S}$.

The **capacity** of the cut is

capacity(
$$S, \overline{S}$$
) = $\sum_{\substack{u \in S, v \in \overline{S}:\\u \to v}} c(u \to v)$

MAX-FLOW MIN-CUT THEOREM

For any flow f and any cut (S, \overline{S}) , value $(f) \leq \text{capacity}(S, \overline{S})$

MAX-FLOW MIN-CUT THEOREM For any flow f and any cut (S, \overline{S}) , value $(f) \leq \text{capacity}(S, \overline{S})$

If we can find a flow
$$f^*$$
 and a cut $(5^*, \overline{5^*})$
such that value $(f^*) = capacity (5^*, \overline{5^*})$ then
 f^* is a maximum flow.
Proof let g be any other flow.
Value (g) $\leq capacity (5^*, \overline{5^*})$ by MFMC
 $= value (f^*)$ by assumption.
 f^* is a maximum flow.

FORD-FULKERSON CLAIM

. **. .** .

The Ford-Fulkerson algorithm, if it terminates, finds a flow f^* and a cut $(S^*, \overline{S^*})$ such that value(f^*) = capacity($S^*, \overline{S^*}$)

An illustration of the Max-Flow Min-Cut Theorem

PROOF STRATEGY Write out the flow conservation equations for each vertex in $S \setminus \{s\}$, and sum them. Then use $0 \le \text{flow} \le \text{capacity}$

Flow conservation at vertices other than s,t.

MAX-FLOW MIN-CUT THEOREM. For any flow f and any cut (S, \overline{S}) , value $(f) \leq \text{capacity}(S, \overline{S})$

$$value(f) = \sum_{u:s \to u} f(s \to u) - \sum_{u:u \to s} f(u \to s) \qquad by definition of How value = net flow out = her flow out - hor flow in= \sum_{u \in V} f(s \to u) - \sum_{u \in V} f(u \to s) \qquad where we're extended f to all points of vertices, and set $f(v \to u) = 0$ if there
= $\sum_{u \in V} f(s \to u) - \sum_{u \in V} f(u \to s)$ where we're extended f to all points of vertices, and set $f(v \to u) = 0$ if there
= $\sum_{u \in V} f(s \to u) - \sum_{u \in V} f(u \to v)$
= $\sum_{v \in S} \left[\sum_{u \in V} f(v \to u) - \sum_{u \in V} f(u \to v) \right]$ Flow concervation says that the term [] is 0 for all vertices in $V \setminus \{s, c\}$.
= $\sum_{v \in S} \sum_{u \in V} f(v \to u) + \sum_{u \in V} \sum_{v \in S} f(v \to u) - \sum_{v \in S} \sum_{u \in S} f(u \to v) = \sum_{v \in S} \sum_{u \in S} f(u \to v) + \sum_{v \in S} \sum_{u \in S} f(v \to u) - \sum_{v \in S} \sum_{u \in S} f(u \to v) = \sum_{v \in S} \sum_{u \in S} \frac{f(u \to v)}{v \in S} \sum_{u \in S} \frac{f(u \to v)}{v \in S} = \sum_{u \in S} \sum_{u \in S} \frac{f(u \to u)}{v \in S} + \sum_{u \in S} \sum_{u \in S} \sum_{u \in S} \frac{f(u \to u)}{v \in S} + \sum_{u \in S} \sum_{u \in S} \sum_{$$$

*
$$\sum_{v \in S} \sum_{u \notin S} f(v \rightarrow u) - \sum_{v \in S} \sum_{u \notin S} f(u \rightarrow v)$$

$$E \sum_{v \in S} \sum_{v \notin S} f(v \rightarrow u)$$
 since $f \neq 0$ on every edge

Important bits of the proof:

volue (f)
$$\not\in \sum_{v \in S} \sum_{v \notin S} f(v - vu)$$
 since $f \neq 0$ on every edge
 $\not= \sum_{v \in S} \sum_{v \notin S} c(v - vu)$ since $f \neq c$ on every edge
 $= corpacity(S, \overline{S})$ by definition of cut capacity

REMARK.

If f=O on every edge from 3 to 5 then the first inequality is an equality. If f=c on every edge from 5 to 3 then the second inequality is an equality. And if both conditions are met, then value (f) = copacity (5, 5).

This is how we'll prove the Ford-Fulkerson claim: We'll demonstrate a flow f^* and a cut $(S^*, \overline{S^*})$ such that all edges $\overline{S^*} \to S^*$ have zero flow, and all edges $S^* \to \overline{S^*}$ are at capacity.

We cannot find an augmenting path in the residual graph. So, terminate.


```
def ford_fulkerson(g, s, t):
 1
         # Let f be a flow, initially empty
 2
        for u \rightarrow v in g.edges:
 3
             f(u \rightarrow v) = 0
 4
 5
         # Define a helper function for finding an augmenting path
 6
        def find_augmenting_path():
 7
             # Define the residual graph h on the same vertices as g
 8
             for u \rightarrow v in g.edges:
 9
                 if f(u \to v) < c(u \to v): give h an edge u \to v labelled "inc u \to v"
10
                 if f(u \rightarrow v) > 0: give h an edge v \rightarrow u labelled "dec u \rightarrow v"
11
             if h has a path from s to t:
12
                 return some such path, together with the labels of its edges
13
             else:
14
15
                 # Let S be the set of vertices reachable from S (used in the proof)
18
                 return None
19
20
         # Repeatedly find an augmenting path and add flow to it
21
        while True:
22
             p = find_augmenting_path()
23
             if p is None:
                                                                                                           a
24
                 break
25
             else:
26
                 compute \delta, the amount of flow to apply along p, and apply it
33
                 # Assert: \delta > 0
39
                 # Assert: f is still a valid flow
                                                                                     S
                                                                                                                                              t
                                                                                                                      b
                                                                                                                 vertices
reachable f
                                                                                                        С
```

FORD-FULKERSON CLAIM

The Ford-Fulkerson algorithm, if it terminates, finds a flow f^* and a cut $(S^*, \overline{S^*})$ such that value (f^*) = capacity $(S^*, \overline{S^*})$

First Support it reventionables. Let
$$f^*$$
 be the final flow it produces, and
Let $5^* = \{vertices reachable from s in the residual graph, at commutation \}.$
Then $(5^*, 5^*)$ is a cut.
(Recall the definition of a cut: we need $sc 5^*$ and $b \in 5^*$. This is so become, at formulation, we could reach the)
And the residual graph has no edges $5^* - v 5^*$ (because vertices in 5^* are unreachable, by defining f states $f^* + v 5^*$.
 $f_{two could for the residual graph has no edges $5^* - v 5^*$ (because vertices in 5^* are unreachable, by defining f states $f(v - vu) = c(v - vu)$
(otherwise the residing graph has an edge $v \frac{e^{5^*}}{-v 5^*} then f(v - vu) = c(v - vu)$
(otherwise the residing graph has an edge $v \frac{f(v - vu)}{-v 4} the)$
 $f the capacity graph has an edge $v \frac{f(v - vu)}{-v 4} the)$
 $f the capacity graph has an edge $v \frac{f(v - vu)}{-v 4} the)$
By the remark as the end of the proof of Max-Flow Min-Cut Theorem,
 $value(f^*) = capacity (5^*, 5^*)$.$$$

- The Ford-Fulkerson algorithm produces both a flow and a cut; and the cut acts as a *certificate of optimality* for the flow.
- Many other optimization algorithms also produce a (solution, certificate) pair. The certificate corresponds to the dual variables in Lagrangian optimization.

A *latent generative model* is a neural network that has been trained to map a random noise vector into something that resembles items from the training dataset.

A *latent generative model* is a neural network that has been trained to map a random noise vector into something that resembles items from the training dataset.

An *adversary* is a neural network that guesses whether an input x is real (i.e. from the training dataset) or fake (i.e. generated by us).

$$x \longrightarrow Y = g_{\phi}(x) \in \{\text{real, fake}\}$$
edge weights ϕ

We can train a good generator by simultaneously training an adversary. When we've finished training, the adversary should be unable to detect whether a given x is real or fake. The adversary is a *certificate* that our generator is good.

G Separtment of Computer Scien × + Scient → C Scient Algorithm 1/materials.html

n z ភ 🗖 🖷

5. Graphs and path finding

Lecture 09 5, 5.1 Graphs ² (14:27) \sim 5.2 Depth-first search ² (11:37) [slides] 5.3 Breadth-first search [△] (6:43) 5.4 Dikstra's algorithm 2 (15:25) pl Lecture 10 proof 2 (24:01) [slides] Lecture 11 5.5 Algorithms and proofs ^[2] (9:29) [slides.pre] 5.6 Bellman-Ford [⊿] (12:13) 5.7 Dynamic programming ^I (13:0€ Lecture 12 [slides.pre] 5.8 Johnson's algorithm ² (13:43) Example sheet 4 [pdf] Optional tick: bfs-all from ex4.q6 Optional challenge: hatgpt-bfs Optional assignment: grade-chatgpt Optional tick: bf-cycle from ex4.q19

😽 Algorithms task grade-chatgpt 🛛 🗙 🕂

Q 🕁

Algorithms assignment grade-gpt: Grading ChatGPT's proof

Can ChatGPT be persuaded to give a proper proof of correctness of an algorithm? Here are three attempts, for an algorithm that solves the <u>bfs-all</u> tick:

• Catley, Prynn, and Huang.

Please mark these attempts, on a scale of 0–20. Your mark should be for the final proof, not for how well it was elicited. **Please submit your grades on <u>Moodle</u>**. I'll pick the most controversially-marked answer and go through it in lectures. Please use the following marking scheme:

mark	meaning
5	Coherent fragments
9	Coherent in parts, but with serious gaps
13	A basically correct argument but with some signs of confusion
17	Essentially correct, but not fully rigorous
19	Nearly all correct, only minor technical holes

How well does ChatGPT generate algorithms? For interest, here are the attempts to get ChatGPT to design the algorithm:

• Catley, Shen, Chen, Prynne, and Huang.