
SECTION 6.3

Max-flow min-cut
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A cut is a partition of the vertices into two sets, 
𝑉 = 𝑆 ∪ ҧ𝑆, with the source vertex 𝑠 ∈ 𝑆 and 
the sink vertex 𝑡 ∈ ҧ𝑆.

The capacity of the cut is

capacity 𝑆, ҧ𝑆 = 

𝑢∈𝑆, 𝑣∈ ҧ𝑆∶
𝑢→𝑣

𝑐(𝑢 → 𝑣)

MAX-FLOW MIN-CUT THEOREM
For any flow 𝑓 and any cut (𝑆, ҧ𝑆),

value 𝑓 ≤ capacity(𝑆, ҧ𝑆)

𝑆

ҧ𝑆
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FORD-FULKERSON CLAIM
The Ford-Fulkerson algorithm, if it terminates, 
finds a flow 𝑓∗ and a cut (𝑆∗, 𝑆∗) such that

value 𝑓∗ = capacity(𝑆∗, 𝑆∗)



An illustration of the Max-Flow Min-Cut Theorem

PROOF STRATEGY

Write out the flow conservation 
equations for each vertex in 𝑆 ∖ {𝑠}, 
and sum them. Then use 

0 ≤ flow ≤ capacity



MAX-FLOW MIN-CUT THEOREM. For any flow 𝑓 and any cut (𝑆, ҧ𝑆), value 𝑓 ≤ capacity(𝑆, ҧ𝑆)



Important bits of the proof:

This is how we’ll prove the Ford-Fulkerson claim: 
We’ll demonstrate a flow 𝑓∗ and a cut (𝑆∗, 𝑆∗) 
such that all edges 𝑆∗ → 𝑆∗ have zero flow, and 
all edges 𝑆∗ → 𝑆∗ are at capacity.
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WALKTHROUGH OF FORD-FULKERSON

inc b→tinc s→b

δ=4

A flow network

The residual 
graph

An augmenting 
path
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δ=8

inc s→b

dec b→t
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vertices 
reachable from s

We cannot find an augmenting path in the residual graph. So, terminate.
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def ford_fulkerson(𝑔, 𝑠, 𝑡):
# Let 𝑓 be a flow, initially empty
for 𝑢 → 𝑣 in g.edges:

𝑓(𝑢 → 𝑣) = 0

# Define a helper function for finding an augmenting path
def find_augmenting_path():

# Define the residual graph ℎ on the same vertices as 𝑔
for 𝑢 → 𝑣 in 𝑔.edges:

if 𝑓 𝑢 → 𝑣 < 𝑐(𝑢 → 𝑣): give ℎ an edge 𝑢 → 𝑣 labelled “inc 𝑢 → 𝑣”
if 𝑓 𝑢 → 𝑣 > 0: give ℎ an edge 𝑣 → 𝑢 labelled “dec 𝑢 → 𝑣”

if ℎ has a path from 𝑠 to 𝑡:
return some such path, together with the labels of its edges

else:

# Let 𝑆 be the set of vertices reachable from 𝑠 (used in the proof)
return None

# Repeatedly find an augmenting path and add flow to it
while True:

p = find_augmenting_path()
if p is None:

break
else:

compute 𝛿, the amount of flow to apply along p, and apply it
# Assert: 𝛿 > 0
# Assert: 𝑓 is still a valid flow
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FORD-FULKERSON CLAIM
The Ford-Fulkerson algorithm, if it terminates, finds a flow 𝑓∗ and a cut (𝑆∗, 𝑆∗) such that value 𝑓∗ = capacity(𝑆∗, 𝑆∗)
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❖ The Ford-Fulkerson algorithm produces both a flow 
and a cut; and the cut acts as a certificate of optimality 
for the flow.

❖ Many other optimization algorithms also produce a 
(solution, certificate) pair. The certificate corresponds 
to the dual variables in Lagrangian optimization.
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𝑋 = 𝑓𝜃(𝑍)

A latent generative model is a neural network that has been trained to map a random 
noise vector into something that resembles items from the training dataset.



A latent generative model is a neural network that has been trained to map a random 
noise vector into something that resembles items from the training dataset.

edge weights 𝜃

random 
noise 𝑍

𝑋 = 𝑓𝜃(𝑍)

edge weights 𝜙

𝑥 𝑌 = 𝑔𝜙 𝑥 ∈ {real, fake}

An adversary is a neural network that guesses whether an input 𝑥 is real (i.e. from the 
training dataset) or fake (i.e. generated by us).

We can train a good generator by simultaneously training an adversary. When we’ve 
finished training, the adversary should be unable to detect whether a given 𝑥 is real 
or fake. The adversary is a certificate that our generator is good.
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