


SECTION 6.1
Flow networks
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THE FLOW PROBLEM

Consider a directed graph in which each edge has a capacity.
How should we assign a flow to each edge,
so as to maximize the flow value?
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Methods of finding the minimum
total kilometrage in cargo-
transportation planning in
space, A.N.Tolstoy, 1930



Fundamentals of a method for evaluating rail net
capacities, T.E.Harris and F.S.Ross, 1955

NOTICE: THIS DOCUMENT CONTAINS INFORMATION
AFFECTING THE NATIONAL DEFENSE OF THE UNITED
STATES WITHIN THE MEANING OF THE ESPIONAGE LAW,
TITLE 18, U.S.C. SECTIONS 793 and 794. THE
TRANSMISSION OR THE REVELATION OF ITS CONTENTS
IN ANY MANNER TO AN UNAUTHORIZED PERSON IS
PROHIBITED BY LAW.
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Given a directed graph with a source vertex s and a sink vertex t, where each edge u — v has a capacity c(u » v) > 0,
a flow f is a set of edge labels f (u — v) such that

" 0<f(u—-v)<c(u—v)oneveryedge

= total flow in = total flow out, at all vertices other than s and t FL-GW C°NSEQVAT'°N

and the value of the flow is gertex Vi
_ _ . eq- okt
» value(f) = net flow out of s = net flow into ¢ .- 3.,.3
fHew 'n =
=kt
PROBLEM STATEMENT f(d‘”“" hra

Find a flow with maximum possible value (called a maximum flow).
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SECTION 6.2
Ford-Fulkerson algorithm
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can send +1
along s—v-t

Use a ?ad'h ftmdl'gﬁlg (e] BFS) )
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Look for a path to the sink along which we can increase flow, then increase it as much as we can.
Repeat this, until we can’t reach the sink.




SIMPLE GREEDY STRATEGY

Look for a path to the sink along which we can increase flow, then increase it as much as we can.
Repeat this, until we can’t reach the sink.

QUESTION. Can you find a larger-value flow than this?



I'll siphon some of f here,
from the a—b flow. Redirect
some of your excess to t, so0
they don't notice!

Send some of your
stuff to me, 50 |
can siphon it of f!

They've shown
me | can increase
my flow value!

Send some of
your stuff to me,

Send some of your
stuff to me, 90 |
can siphon it of f!



They've shown
me | can increase
my flow value!

| could extract a
flow of 3 at b ...



They've shown
me | can increase
my flow value!

Or | could
extract a flow
of Sata..



They've shown
me | can increase
my flow value!

| shall extract
an extra flow
of 2 at t.
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Ford-Fulkerson algorithm

1. Start with zero flow
while True:

2. Run bandit search to discover if the flow to t can be increased,
and, if so, find an appropriate sequence of edges

if £ can be reached:
3. update the flow along those edges

if t can’t be reached:
break
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STEP 2A. Build the residual graph, which has the same
vertices as the flow network, and

» iff(u—-v)<clu-v):

give the residual graph anedge u = v /
. . Us€ a FIPO
with the label “increase flow u - v”
AV
= if f(u>v) > 0: AT
4

give the residual graph an
with the label “decrease f

The resrel. edjc i3 i
e opposive divechon @
(he e tn e oW
retot!”

STEP 2B. Look for a path from s to t in the residual graph.

This is called an augmenting path.

STEP 3. Find an update amount § > 0 that can be applied to
all the edges along the augmenting path. Apply it.

s  This yells a valkd flow.
Ot f £c.

® ,C{gw sorgemohon sRil SOJ'I:SI;\-':J.

fot. v ~fot.oh = T "‘"‘0

after : fof: in ~fdh.00C = b -4-0.



WALKTHROUGH OF FORD-FULKERSON




WALKTHROUGH OF FORD-FULKERSON

CRUCIAL TRICK

The residual graph doesn’t have capacities, it
just has edges, so we can use e.g. breadth-first
search to find a path. We've reduced flow-
finding to path-finding.



WALKTHROUGH OF FORD-FULKERSON

CRUCIAL TRICK
The residual graph doesn’t have capacities, it
just has edges, so we can use e.g. breadth-first
search to find a path. We've reduced flow-
finding to path-finding.



WALKTHROUGH OF FORD-FULKERSON

We cannot find an augmenting path in the residual graph. So, terminate.

-
~~~~~~
___________________

CRUCIAL TRICK

The residual graph doesn’t have capacities, it \

just has edges, so we can use e.g. breadth-first

search to find a path. We've reduced flow- @ reao/habLe
vertiees

finding to path-finding.
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def ford_fulkerson(g, s, t):
# Let f be a flow, initially empty
for u = v in g.edges:

flu->v) =0 f f3 c'v\krﬂ'

# Define a helper function for finding an augmenting path
def find_augmenting_path(): ‘—T
# Define the residual graph h on the same vertices as g
for u > v in g.edges:
if flu—>v)<c(u->v): give h an edge u » v labelled “inc u — v” d(\/{’E)
if flu—>v)>0: give h an edge v » u labelled “dec u — v”
if h has a path from s to t:
return some such path, together with the labels of its edges
else:
# Let S be the set of vertices the bandits can reach (used in the Aroof)
return None ~—

e.q-Vs"Y BFS

# Repeatedly find an augmenting path and add flow to it
while True:

p = find_augmenting_path()

if p is None:

break S will be I‘V\kr”',

else;
‘ he amount of flow to apply along p, and apply it
FAsSere: 6> 0 by comseruelN'on of res e ﬂﬁf‘-- 0(")

# Assert: [ is sthJ,a valid flow

fatod copt = f fleratioy x o (V+E),

O is whger, S350 o I3 So Hew Value champy by of Gest 1, amd remaive rubepel

The Integrality Lemma. If the capacities are all integers, then the 7 # (fexaniong
algorithm terminates, and the resulting flow on each edge is an integer.
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Algorithms tick: max-flow

Maximum flow with Ford-

Fulkerson / Edmonds-Karp

In this tick you will build a Ford—Fulkerson implementation from
scratch. In fact you will implement the Edmonds—Karp variant of Ford—

Fulkerson, which uses ' S) to find augmenting
paths, and which hagO(V E?) running time.
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Maximum Flow and Minimum-Cost Flow in Almost-Linear Time
Li Chen, Rasmus Kyng, Yang P. Liu, Richard Peng, Maximilian Probst Gutenberg, Sushant Sachdeva

gn directed graphs wi
and polynomially bounded integral demands, costs, and capacitie§ in m time. fOur algorithm builds the, flow

of which is computed anpd
processed in amortized m°1) time using a new dynamic graph data stjucture.
Qur framework extends to algorithms running in m1te() time for co puting flows that minimize general £dge-
separable convex functions to high accuracy. This gives almost-lingar time algorithms for several problgms including

entropy-regularized optimal transport, matrix scaling, p-norm flows, and p-norm isotonic regression on grbitrary
directed acyclic graphs.
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