

SECTION 6.1
 Flow networks

THE FLOW PROBLEM

Consider a directed graph in which each edge has a capacity. How should we assign a flow to each edge, so as to maximize the flow value?

Methods of finding the minimum total kilometrage in cargotransportation planning in space, A.N.Tolstoy, 1930

Fig. 7 - Troffic pattern: entire network ovailable

Le9en6:
-.. - Internetiena! beundery

-[12]- Copscity: 12 each woy per dey. Rtsuires tiow of 9 per doy taword destinglions (is direstien of errew)
with etolivelent number of returning creins in appesite direction

Origins: pivisions $2,3 \mathrm{~F}, 3 \mathrm{~F}, 25,13 \mathrm{~N}, 135$, $12,52 \mathrm{~J} 5 \mathrm{SW}$), ond Reverinis
(pestinstions: Divislens 3,6,9 (Felene4); B(Caechusipvevasis); ase 2, 3(4ashrla)

Alternative destisetions: Germeny or East Germasy

Note if of Dlvisibe 9, Folent

Fig. 7 - Troffic pattern: entire network ovailable

Lesen6:

- - in'ernetienal bewndery
(B) Ablisoy operating alvigise
-(T) Cepacity: it wach way per doy. hisuirte tiow of 9 per day towand Attinetient fto firseties of errew) sith esplualent number of returning treins is oppesife directise

Grigins: Bielsioss $\mathrm{z}, 3 \mathrm{~W}, 3 \mathrm{~F}, \mathbf{2 5}, 13 \mathrm{~N}, 135$, 12, S2 IUS5日), one llevnssis
pestinstioss: Diviliont 3, 6, 9 (Polase4);

Alternative Aestinations: Bermeny or Cest ? ? ©ermpay

Nete itx of bivision 9, Folent

Fig. 7 - Traffic pattern: entire notwork available

Lestes:
-n- Internetionel bewnder)
(8) Abliwy operating olvigise

- [2]- Capscity: in wath woy per doy
 cith newivalent number of returning. ysins is spyosite direttion

Origing: Olvishes $\mathrm{z}, 3 \mathrm{~W}, 3 \mathrm{C}, 25,13 \mathrm{~N}, 135$,
12, S2 Jussin), ons hovesnip
pestingtions: Diviliten 3, 5, 9 (Palyen):

Alternative Aestinatians dernany or Cost Germany

Nete IIK of blvisisis 9, Foiss

SECRET ${ }^{30-197)}$

Fig. 7 - Traffic pottern: entire notwork ovailable

Lesent:
-w- I -ternetionel bewnder?
(B) Ralway operating olvigise

- [2]- Capscity: in wath woy per doy

 urins is spposite difection
 Origing: Olvisies $\mathrm{Z}, 3 \mathrm{~W}, 3 \mathrm{C}, 25,13 \mathrm{~N}, 135$, 12 , S2/USsin), ons hovesnip
¢estingtions: Birlalsen 3, 6, $\boldsymbol{8}($ Pawn4)

Altarnative deatisatians Bernasy or tasp Germany

Nete IIK of blulaisi 9, Foises

Given a directed graph with a source vertex s and a sink vertex t, where each edge $u \rightarrow v$ has a capacity $c(u \rightarrow v)>0$, a flow f is a set of edge labels $f(u \rightarrow v)$ such that

- $0 \leq f(u \rightarrow v) \leq c(u \rightarrow v)$ on every edge
- total flow in = total flow out, at all vertices other than s and t FLOW CONSERVATION
and the value of the flow is
- value $(f)=$ net flow out of $s=$ net flow into t

PROBLEM STATEMENT

Find a flow with maximum possible value (called a maximum flow).

In symbolic notation,

FLOW CONSERUATION says that at all serines other than s and t, rot How in = rot How ort:

$$
\forall v \in V \backslash\{s, t\}: \quad \sum_{w: v \rightarrow w} f(v \rightarrow w)=\sum_{w: w \rightarrow v} f(w \rightarrow v)
$$

Equivalently,

$$
\forall v \in V,\{s, t\}: \quad \sum_{w: v \rightarrow w} f(v \rightarrow w)-\sum_{w: w \rightarrow v} f(w \rightarrow v)=0 \quad \text { ie net flow in is zero. }
$$

FLOW value

$$
\begin{aligned}
& =\text { net flow out of } s=\sum_{v<s \rightarrow r} f(s \rightarrow v)-\sum_{v: v \rightarrow s} f(v \rightarrow s) \\
& =\text { net flow into } t=\sum_{v: r \rightarrow t} f(v \rightarrow t)-\sum_{v: t \rightarrow r} f(t \rightarrow v)
\end{aligned}
$$

(The example sheet ask) you to prove that these two are allays equal. It uses a proof rechnique from next lecture.)

SECTION 6.2 Ford-Fulkerson algorithm

SIMPLE GREEDY STRATEGY (on the graph of "edges where we can increate capacity". Look for a parch from s io t.
Look for a path to the sink along which we can increase flow, then increase it as much as we can. Repeat this, until we can't reach the sink.

SIMPLE GREEDY STRATEGY

Look for a path to the sink along which we can increase flow, then increase it as much as we can. Repeat this, until we can't reach the sink.

QUESTION. Can you find a larger-value flow than this?

1. Start with zero flow
while True:
2. Run bandit search to discover if the flow to t can be increased, and, if so, find an appropriate sequence of edges
if t can be reached:
3. update the flow along those edges
if t can't be reached:
break

WALKTHROUGH OF FORD-FULKERSON

WALKTHROUGH OF FORD-FULKERSON

 finding to path-finding.

WALKTHROUGH OF FORD-FULKERSON

 finding to path-finding.

WALKTHROUGH OF FORD-FULKERSON

We cannot find an augmenting path in the residual graph. So, terminate.

Assume capacities are all integer.
def ford_fulkerson (g, s, t) :
\# Let f be a flow, initially empty
for $u \rightarrow v$ in g.edges:
$f(u \rightarrow v)=0 \quad$ of is integer
\# Define a helper function for finding an augmenting path
def find_augmenting_path():
\# Define the residual graph h on the same vertices as g
for $u \rightarrow v$ in g.edges:
if $f(u \rightarrow v)<c(u \rightarrow v)$: give h an edge $u \rightarrow v$ labelled "inc $u \rightarrow v$ "
if $f(u \rightarrow v)>0$: give h an edge $v \rightarrow u$ labelled "dec $u \rightarrow v$ "
if h has a path from s to t :
return some such path, together with the labels of its edges
else:
\# Let S be the set of vertices the bandits can reach (used in the proof) return None
\# Repeatedly find an augmenting path and add flow to it
while True:
p = find_augmenting_path()
if p is None:
break
δ will be integer.
else:
compute δ the amount of flow to apply along p, and apply it
\# Assert: $\delta>0$ by construction of residual graph. O O(v)
total cost $=$ iterations $\times O(V+\epsilon)$.
δ is integer. $\delta>0 \therefore \delta \geqslant 1$. So flow value changes by at least 1 , and remains integer. The Integrality Lemma. If the capacities are all integers, then the algorithm terminates, and the resulting flow on each edge is an integer.

Algorithms tick: max-flow

 Deadline II March. Maximum flow with FordFulkerson / Edmonds-KarpIn this tick you will build a Ford-Fulkerson implementation from scratch. In fact you will implement the Edmonds-Karp variant of FordFulkerson, which uses hroaethriist searcit(BFS) to find augmenting paths, and which has $O\left(V E^{2}\right)$ running time.
［2203．00671］Maximum Flow and x
$+$
https：／／arxiv．org／abs／2203．00671

Help｜Advanced Search

Computer Science＞Data Structures and Algorithms

［Submitted on 1 Mar 2022 （v1），last revised 22 Apr 2022 （this version，v2）］

Maximum Flow and Minimum－Cost Flow in Almost－Linear Time

Li Chen，Rasmus Kyng，Yang P．Liu，Richard Peng，Maximilian Probst Gutenberg，Sushant Sachdeva

$$
\begin{aligned}
& \forall \varepsilon>0 \exists r_{1} m_{0} . \\
& \quad \forall m \geqslant m_{0}, \\
& \quad \text { runtime } \leqslant m^{1+\varepsilon}
\end{aligned}
$$

Download：

－PDF
－Other formats
（license）
Current browse context： cs．DS
＜prev｜next＞
new｜recent｜ 2203
Change to browse by：
cs
References \＆Citations
－NASA ADS
－Google Scholar
－Semantic Scholar
5 blog links（what is this？）
Export Bibtex Citation
Bookmark
颙界雨

Submission history

