

SECTION 6.1

Flow networks

THE FLOW PROBLEM

Consider a directed graph in which each edge has a capacity. How should we assign a flow to each edge, so as to maximize the flow value?

Methods of finding the minimum total kilometrage in cargotransportation planning in space, A.N.Tolstoy, 1930

SECRET 10-24-55

Fig. 7 — Traffic pattern: entire network available

Legens:

--- International boundary

(B) Belleve consultan division

Copocity: 12 each way per day.
ftcquired flow of 9 per day toward
destinations (in direction of arrow)
with equivalent number of returning
trains in apposite direction

All capacities in J1000's of tona each way per day

Origins: Divisions 2, 3W, 3E, 29, 13N, 135, 12, 52 (USSR), one Rosmania

Pestinctions: Divisions 3, 6, 9 (Poland);
8 (Czechoslovovakia); and 2, 3 (Austria

Alternative destinations: Germany or East
Germany

Note IIX of Division 9, Polent

SECRET 10-04-55

Fig. 7 — Traffic pattern: entire network available

Legens:

--- International boundary

(B) Rollway operating division

Copocity: 12 each way per day.

ftsquired flow of 9 per day toward
destinations (in direction of arrow)
with equivalent number of returning
trains in apposite direction

All capacities in J1000's of tons each way per day

Origins: Divisions 2, 3W, 3E, 29, I3N, I39, I2, 52(USSR), and Roymenia

Pestinations: Divisions 3, 6, 9 (Peland);
B(Czechoslovovskia); and 2, 3 (Austria)

Alternative destinations: Germany or East Germany

Note IIX at Civision 9, Poland

SECRET 10-04-55

Fig. 7 — Traffic pattern: entire network available

Legens:

- - International boundary

(B) Rollway operating division

Capacity: 12 each way per day.

Statuired flow of 9 per day toward destinations (in direction of arrow) with equivalent number of returning trains in apposite direction.

All capacities in J1000's of tons each way per day

Origins: Divisions 2, 3W, 3C, 25, 13N, 135, 12, 52(USSH), and Roumania

pestinations: Divisions 3, 6, 9 (Points);
8 (Czechoslovowskia); and 2, 3 (Austria)

Alternative destinations: Germany or East Germany

Note IIX of Division 9, Polend

Given a directed graph with a source vertex s and a sink vertex t, where each edge $u \to v$ has a capacity $c(u \to v) > 0$, a flow f is a set of edge labels $f(u \to v)$ such that

- $0 \le f(u \to v) \le c(u \to v)$ on every edge
- total flow in = total flow out, at all vertices other than s and t

and the value of the flow is

• value(f) = net flow out of s = net flow into t

PROBLEM STATEMENT

Find a flow with maximum possible value (called a maximum flow).

FLOW CONSERVATION

In symbolic notation,

FLOW CONSERVATION says that at all vertices other than s and t, not flow in = not However:

Equivalently,

$$\forall v \in V \setminus \{s, t\}$$
: $\sum_{w:v \neq w} f(v \rightarrow w) - \sum_{w:w \neq v} f(w \rightarrow v) = 0$ ie net flow in is zero.

FLOW VALUE

= net flow out of s =
$$\sum_{v > +v} f(s - v) - \sum_{v > +v} f(v - vs)$$

= net flow into
$$t$$
 = $\sum_{v:v \to t} f(v \to t) - \sum_{v:t \to v} f(t \to v)$

(The example sheet asks you to prove that these two are always equal.

It uses a proof rechnique from next because.)

SECTION 6.2

Ford-Fulkerson algorithm

Look for a path to the sink along which we can increase flow, then increase it as much as we can. Repeat this, until we can't reach the sink.

SIMPLE GREEDY STRATEGY

Look for a path to the sink along which we can increase flow, then increase it as much as we can. Repeat this, until we can't reach the sink.

QUESTION. Can you find a larger-value flow than this?

1. Start with zero flow

while True:

2. Run bandit search to discover if the flow to t can be increased, and, if so, find an appropriate sequence of edges

if *t* can be reached:

3. update the flow along those edges

if *t* can't be reached:

break

STEP 2A. Build the **residual graph**, which has the same vertices as the flow network, and

- if $f(u \to v) < c(u \to v)$: give the residual graph an edge $u \to v$ with the label "increase flow $u \to v$ "
- if $f(u \to v) > 0$:
 give the residual graph an erige $v \to u$ with the label "decrease flow $u \to v$ "

 The residual edge is in the apposite direction to the edge in the flow

STEP 2B. Look for a path from s to t in the residual graph. This is called an **augmenting path.**

network

STEP 3. Find an update amount $\delta > 0$ that can be applied to all the edges along the augmenting path. Apply it.

Lemma This ycèlds a vahid flow.

Proof • We chose & so ensure $O \le f \le c$.

· flow conservation is still soutisfied.

We cannot find an augmenting path in the residual graph. So, terminate.

Assume capacités are all integer.

```
def ford_fulkerson(g, s, t):
        # Let f be a flow, initially empty
        for u \rightarrow v in g.edges:
            f(u \rightarrow v) = 0 f is integer
                                                                                    e.q. using BFS
0(V+E)
        # Define a helper function for finding an augmenting path
        def find_augmenting_path():
            # Define the residual graph h on the same vertices as g
            for u \rightarrow v in g.edges:
                if f(u \to v) < c(u \to v): give h an edge u \to v labelled "inc u \to v"
                if f(u \to v) > 0: give h an edge v \to u labelled "dec u \to v"
11
            if h has a path from s to t:
                return some such path, together with the labels of its edges
13
14
            else:
                # Let S be the set of vertices the bandits can reach (used in the proof)
15
18
                return None
19
        # Repeatedly find an augmenting path and add flow to it
20
21
        while True:
            p = find_augmenting_path()
22
            if p is None:
23
                              & will be integer.
24
                break
25
            else:
                compute \delta the amount of flow to apply along p, and apply it
26
                                   by construction of residual graph.
33
                # Assert: f is still a valid flow
39
```

total cost = # iteration x O(V+E),

S is integer. 570 : 571. So flow value changes by at least 1, and remain integer.

Integrality Lemma. If the capacities are all integers then the # iferations & max flow value 200

The Integrality Lemma. If the capacities are all integers, then the algorithm terminates, and the resulting flow on each edge is an integer.

Algorithms tick: max-flow Maximum flow with Ford Fulkerson / Edmonds-Karp

In this tick you will build a Ford–Fulkerson implementation from scratch. In fact you will implement the Edmonds–Karp variant of Ford–Fulkerson, which uses breadth first search (BFS) to find augmenting paths, and which has $O(VE^2)$ running time.

Subjects: Data Structures and Algorithms (cs.DS)

Cite as: arXiv:2203.00671 [cs.DS]

(or arXiv:2203.00671v2 [cs.DS] for this version)

https://doi.org/10.48550/arXiv.2203.00671

VE > 0 3 K, Mo. YM > Mo, Ountine & KMITE

Bookmark

X Science WISE

Submission history

From: Li Chen [view email]

[v4] Tuo. 1 Mar 2022 18:45:57 LITC (133 KB)