

SECTION 6.1
Flow networks

sink ‘ flow

value

‘1)!213

¢

THE FLOW PROBLEM

Consider a directed graph in which each edge has a capacity.
How should we assign a flow to each edge,
so as to maximize the flow value?

chA°
()
@
OPEHBYPI S
[]
@
@
@
k3bln-ornAQ
XV1BA Q)

® Y HOBO-
O MBUPCK
® W OMCK
O
Q O 2
U
O CEMUNANATUHCK
°
@
O
O O

W TALLUKEHT

Methods of finding the minimum
total kilometrage in cargo-
transportation planning in
space, A.N.Tolstoy, 1930

Fundamentals of a method for evaluating rail net
capacities, T.E.Harris and F.S.Ross, 1955

NOTICE: THIS DOCUMENT CONTAINS INFORMATION
AFFECTING THE NATIONAL DEFENSE OF THE UNITED
STATES WITHIN THE MEANING OF THE ESPIONAGE LAW,
TITLE 18, U.S.C. SECTIONS 793 and 794. THE
TRANSMISSION OR THE REVELATION OF ITS CONTENTS
IN ANY MANNER TO AN UNAUTHORIZED PERSON IS
PROHIBITED BY LAW.

— \ |r_j ™ < { -~ ml
' e y \/ “L// \ m?':‘ i
P '// i

~owoms

-
W-2-95

SECRET yy

Fig. 7 — Troffic pottern: entire
natwork ovoiloble

Legens.

Intesnptional boundory

\/O\, Rellwoy eperating Sivipine

«:})—- Copacity: 12 eacth way per oy

Reguired Taw of 9 par 4oy towems
destinptions (s direction of orrew)
with sguivelent aumbar of retureing
HOIAN n apposite direct an

.
AN cepachtiog » ‘,.'O:,‘;', of ,,..}nu why P

Origing. Odwinions 2, 3w, 3E, 25,105,198,

12, SZIVSEN), ena Resmanie

Pestingtions: Divislom 3, 6, 0 (Founs),
BlCanehaniovovatin), ot 2. 3 (Aairia)

Alternative destinatans Sermony o Tawt
Cermuny

Nete 11X ot Dlvision 9, Poland

N

lt

ORIGINS

Note 11X ot Divises 9, Foland

L AN

-7
SECRET o5 >

Fig 7 = Trotfic pottern: entire
network ovoiloble

Legens;
- — etgrnotione | Dewndery

@ Relwoy operatng Risipine

‘d]- Copacity 12 #oth way per #oy

Reguired tow of 9 per day towand
dertingtions (in girection of grrew)
e ith sguivalent aumber of returning
RIS n appenite dirertian

AN cepochtion Iw: of ,,..}nu —

Origing. Divinions 2, 3w, 3C, 25,108,100,
12, SR IVSANR), ane Resmane

Pestingtions: Divisiom 3, 6,0 (Feuss),
B iCarenosinvavatinl, ot 2 3 lAawtria)

Alternative destinatans Oermony o Lant - >
Cermany

.-. ’
o

source

Given a directed graph with a source vertex s and a sink vertex t, where each edge u — v has a capacity c(u » v) > 0,
a flow f is a set of edge labels f (u — v) such that

" 0<f(u—-v)<c(u—v)oneveryedge

= total flow in = total flow out, at all vertices other than s and t FL-GW C°NSEQVAT'°N

and the value of the flow is gertex Vi
_ _ . eq- okt
» value(f) = net flow out of s = net flow into ¢ .- 3.,.3
fHew 'n =
=kt
PROBLEM STATEMENT f(d‘”“" hra

Find a flow with maximum possible value (called a maximum flow).

Tn % mbollc Notahow,

oW coNgeRUAT IOV 575 that ot ol vetMes stfan et s ot €, for How Y = Fot How ove ;

VveVsbseld @00 20 flmw) = 2>, fluv)

wiv—eWw Wiw vV
Eo(u.‘vW(Lm:Hy‘
C oveVs fseds 2, flivw) — 2 Cruwt) 20 & peeflow in ks zom
WiV ewW WwWiw-tvV

FlLowW VALVE

S, fls) — 2 F i)

net Howwt-é‘} s = o Bl

M\

N

net {'{M ‘wh ¢ = Z F('\l—-ve) - Z f(t/v\f)

Vivrwe V: byy

(m éXaMy‘t shazt sk 7m to pree fhet fthege +wo aure a,bwa;a e7uod.
It ves « Pf"‘ff l‘cc(/um‘clum frowv rax+ Le.dWE-)

SECTION 6.2
Ford-Fulkerson algorithm

flow

value
12

can send +1
along s—v-t

Use a ?ad'h ftmdl'gﬁlg (e] BFS))
on the raph of * edrs Whue we com increae cofacc{>'~
SIMPLE GREEDY STRATEGY Lasl fr o porh frem S M €,

Look for a path to the sink along which we can increase flow, then increase it as much as we can.
Repeat this, until we can’t reach the sink.

SIMPLE GREEDY STRATEGY

Look for a path to the sink along which we can increase flow, then increase it as much as we can.
Repeat this, until we can’t reach the sink.

QUESTION. Can you find a larger-value flow than this?

I'll siphon some of f here,
from the a—b flow. Redirect
some of your excess to t, so0
they don't notice!

Send some of your
stuff to me, 50 |
can siphon it of f!

They've shown
me | can increase
my flow value!

Send some of
your stuff to me,

Send some of your
stuff to me, 90 |
can siphon it of f!

They've shown
me | can increase
my flow value!

| could extract a
flow of 3 at b ...

They've shown
me | can increase
my flow value!

Or | could
extract a flow
of Sata..

They've shown
me | can increase
my flow value!

| shall extract
an extra flow
of 2 at t.

>@%
o fovvaiueims

@ inereased by 2
Ford-Fulkerson algorithm

1. Start with zero flow
while True:

2. Run bandit search to discover if the flow to t can be increased,
and, if so, find an appropriate sequence of edges

if £ can be reached:
3. update the flow along those edges

if t can’t be reached:
break

O

Prof © We chowe & o ensre

STEP 2A. Build the residual graph, which has the same
vertices as the flow network, and

» iff(u—-v)<clu-v):

give the residual graph anedge u = v /
. . Us€ a FIPO
with the label “increase flow u - v”
AV
= if f(u>v) > 0: AT
4

give the residual graph an
with the label “decrease f

The resrel. edjc i3 i
e opposive divechon @
(he e tn e oW
retot!”

STEP 2B. Look for a path from s to t in the residual graph.

This is called an augmenting path.

STEP 3. Find an update amount § > 0 that can be applied to
all the edges along the augmenting path. Apply it.

s This yells a valkd flow.
Ot f £c.

® ,C{gw sorgemohon sRil SOJ'I:SI;\-':J.

fot. v ~fot.oh = T "‘"‘0

after : fof: in ~fdh.00C = b -4-0.

WALKTHROUGH OF FORD-FULKERSON

WALKTHROUGH OF FORD-FULKERSON

CRUCIAL TRICK

The residual graph doesn’t have capacities, it
just has edges, so we can use e.g. breadth-first
search to find a path. We've reduced flow-
finding to path-finding.

WALKTHROUGH OF FORD-FULKERSON

CRUCIAL TRICK
The residual graph doesn’t have capacities, it
just has edges, so we can use e.g. breadth-first
search to find a path. We've reduced flow-
finding to path-finding.

WALKTHROUGH OF FORD-FULKERSON

We cannot find an augmenting path in the residual graph. So, terminate.

-
~~~~~~
___________________

CRUCIAL TRICK

The residual graph doesn’t have capacities, it \

just has edges, so we can use e.g. breadth-first

search to find a path. We've reduced flow- @ reao/habLe
vertiees

finding to path-finding.



A ssume cwpacfl\;;) owe olf »'nyvr:

def ford_fulkerson(g, s, t):
# Let f be a flow, initially empty
for u = v in g.edges:

flu->v) =0 f f3 c'v\krﬂ'

# Define a helper function for finding an augmenting path
def find_augmenting_path(): ‘—T
# Define the residual graph h on the same vertices as g
for u > v in g.edges:
if flu—>v)<c(u->v): give h an edge u » v labelled “inc u — v” d(\/{’E)
if flu—>v)>0: give h an edge v » u labelled “dec u — v”
if h has a path from s to t:
return some such path, together with the labels of its edges
else:
# Let S be the set of vertices the bandits can reach (used in the Aroof)
return None ~—

e.q-Vs"Y BFS

# Repeatedly find an augmenting path and add flow to it
while True:

p = find_augmenting_path()

if p is None:

break S will be I‘V\kr”',

else;
‘ he amount of flow to apply along p, and apply it
FAsSere: 6> 0 by comseruelN'on of res e ﬂﬁf‘-- 0(")

# Assert: [ is sthJ,a valid flow

fatod copt = f fleratioy x o (V+E),

O is whger, S350 o I3 So Hew Value champy by of Gest 1, amd remaive rubepel

The Integrality Lemma. If the capacities are all integers, then the 7 # (fexaniong
algorithm terminates, and the resulting flow on each edge is an integer.



v Efg Algorithms tick max-flow X +

¢ C % clcamacuk/teaching/2324/Alg.. & ¢ ©® Z & O @

: : Deadlivne [ Manch,
Algorithms tick: max-flow

Maximum flow with Ford-

Fulkerson / Edmonds-Karp

In this tick you will build a Ford—Fulkerson implementation from
scratch. In fact you will implement the Edmonds—Karp variant of Ford—

Fulkerson, which uses ' S) to find augmenting
paths, and which hagO(V E?) running time.




im) =] [2203.00671] Maximum Flow anc X | =

< O (5) https://arxiv.org/abs/2203.00671

We gratefully acknowledge support from

Cornell University
‘EE’ orne ' EISILy the Simons Foundation and University of Cambridge.

{ 1V > cs > arXiv:2203.00671

Computer Science > Data Structures and Algorithms

[Submitted on 1 Mar 2022 (v1), last revised 22 Apr 2022 (this version, v2)]

Maximum Flow and Minimum-Cost Flow in Almost-Linear Time
Li Chen, Rasmus Kyng, Yang P. Liu, Richard Peng, Maximilian Probst Gutenberg, Sushant Sachdeva

gn directed graphs wi
and polynomially bounded integral demands, costs, and capacitie§ in m time. fOur algorithm builds the, flow

of which is computed anpd
processed in amortized m°1) time using a new dynamic graph data stjucture.
Qur framework extends to algorithms running in m1te() time for co puting flows that minimize general £dge-
separable convex functions to high accuracy. This gives almost-lingar time algorithms for several problgms including

entropy-regularized optimal transport, matrix scaling, p-norm flows, and p-norm isotonic regression on grbitrary
directed acyclic graphs.

m eclazs
Subjects: Data Structures and Algorithms (¢5.DS)
Cite as:  arXiv:2203.00671 [es.DS] Vi 20 3 Kl h‘b .

(or arXiv:2203 0067 1v2 [es.DS] for this version) (
hitps://doi_org/10.48550/arXiv.2203 00671 €@ m»mM,,

vnbive £ m

Itg

Submission history
From: Li Chen [view email]

~ [ [ Oi- 40 -

All fields V'  Search

Help | Advanced Search

Download:

« PDF
e Other formats

(license)

Current browse context:
cs.DS

<prev | next=
new | recent | 2203

Change to browse by:
Cs

References & Citations

« NASAADS
» Google Scholar
+ Semantic Scholar

5 blog links {what is this?)
Export Bibtex Citation

Bookmark

- 0
g oy Eaale
fy, vy S




	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20: WALKTHROUGH OF FORD-FULKERSON
	Slide 21: WALKTHROUGH OF FORD-FULKERSON
	Slide 22: WALKTHROUGH OF FORD-FULKERSON
	Slide 23: WALKTHROUGH OF FORD-FULKERSON
	Slide 24
	Slide 25
	Slide 26

