
SECTION 5.7

Using dynamic 
programming to find 
shortest paths



3.1 The Bellman equation and dynamic programming

Let 𝑣(𝑥) be the total reward that can be gained starting in state 𝑥. Then

𝑣 𝑥 = ൝
termreward𝑥MMMMMMMMNMM if 𝑥 is terminal

max
𝑎∈𝐴

reward𝑥,𝑎 + 𝑣 nextstate𝑥,𝑎 otherwise
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I’d like to find a minimum-weight path from 𝑎 to 𝑑. 
Can I use dynamic programming for this?

How can I frame my task as 
“find an optimal sequence 
of actions”?

▪ What are the actions? 
▪ What is the value/cost that I’m optimizing? 
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Theorem
Let 𝑔 be a directed graph where each edge is labelled with a weight.  
Assume 𝑔 has no –ve weight cycles.

Then, 𝐹𝑡(𝑠, 𝑉 − 1) is the minimum weight from 𝑠 to 𝑡 over paths of any length.

Algorithm
To find a minweight path from 𝑠 to 𝑡, just compute 𝐹𝑡(𝑠, 𝑉 − 1) 
then reconstruct the optimal programme as usual, by replaying the optimal actions.

page 25

EXERCISE. Add in a detection 
subroutine (similar to Bellman-
Ford) that detects whether 𝑔 
satisfies the assumption.



Algorithm
To find a minweight path from 𝑠 to 𝑡, just compute 𝐹𝑡(𝑠, 𝑉 − 1) 
then reconstruct the optimal programme as usual.

𝐹𝑡 𝑣, 𝑛 = min 𝐹𝑡 𝑣, 𝑛 − 1 , min
𝑤:𝑣→𝑤

weight 𝑣 → 𝑤 + 𝐹𝑡(𝑤, 𝑛 − 1)

𝐹𝑡 𝑣, 0 = ቊ
0 if 𝑣 = 𝑡
∞ if 𝑣 ≠ 𝑡

Running time



Dijkstra
if all weights ≥ 0

𝑂 𝐸 + 𝑉 log 𝑉

Dijkstra
if some weights < 0

??? (might not even terminate)

Bellman-Ford 𝑂(𝑉𝐸)

dynamic prog. 𝑂(𝑉2 + 𝑉𝐸)



SECTION 5.8

Finding all-to-all 
shortest paths



P

Definition
The betweenness centrality 
of an edge is the number of 
shortest paths that use that 
edge, considering paths 
between all pairs of vertices 
in the graph
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cost cost if 𝐸 = 𝑉 𝛼, 𝛼 ∈ [1,2]

𝑉 × Dijkstra
for weights ≥ 0

𝑉 × 𝑂(𝐸 + 𝑉 log 𝑉) 𝑂(𝑉1+𝛼 + 𝑉2 log 𝑉)

𝑉 × Bellman-Ford 𝑉 × 𝑂(𝑉𝐸) 𝑂(𝑉2+𝛼)

𝑉 × dyn.prog. 𝑉 × 𝑂(𝑉2 + 𝑉𝐸) 𝑂(𝑉2+𝛼)

What’s the cost of finding all-to-all minimum weights?
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Johnson same as Dijkstra,
but works with –ve edge weights

dynamic prog. 
with matrix trick 𝑂(𝑉3 log 𝑉) 𝑂(𝑉3 log 𝑉)

See Discrete Maths lecture 
14 for how to write the 
Bellman recursion as a 
matrix multiplication.



Johnson’s algorithm
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1. The augmented graph
Add a new vertex 𝑠, and run Bellman-Ford 
to compute minimum weights from 𝑠,

𝑑𝑣 = minweight(𝑠 to 𝑣)

3

2

3

0
0 7

0 2. The helper graph
Define a new graph with modified 
edge weights

𝑤′ 𝑢 → 𝑣 = 𝑑𝑢 + 𝑤 𝑢 → 𝑣 − 𝑑𝑣
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0. The graph where we want all-to-all minweights
Denote the edge weights by  𝑤(𝑢 → 𝑣)

3. Run Dijkstra to get all-to-all distances in 
the helper graph, distance′(𝑢 to 𝑣)

4. Translation
minweight 𝑝 to 𝑞 = distance′ 𝑝 to 𝑞 − 𝑑𝑝 + 𝑑𝑞
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𝑑𝑣 = minweight(𝑠 to 𝑣)
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𝑤′ 𝑢 → 𝑣 = 𝑑𝑢 + 𝑤 𝑢 → 𝑣 − 𝑑𝑣

Lemma. The edge weights in the helper graph are all ≥ 0
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edge weights 𝑤(𝑢 → 𝑣)
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original: helper:



𝑤′ 𝑢 → 𝑣 = 𝑑𝑢 + 𝑤 𝑢 → 𝑣 − 𝑑𝑣
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edge weights 𝑤(𝑢 → 𝑣)

3

2

3

0
0 7

0

Lemma. The translation step computes correct minweights:

minweight 𝑝 to 𝑞 = distance′ 𝑝 to 𝑞 − 𝑑𝑝 + 𝑑𝑞
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original: helper:
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4. Translation
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so
lve

Johnson’s algorithm is an example 
of the translation strategy.

problem we 
want to solve

helper 
problem

solution

solution

As well as specifying 
the two translations, 
we also need to prove 
that this procedure 
does indeed solve the 
original problem!
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