SECTION 5.7 Using dynamic programming to find shortest paths

I'd like to find a minimum-weight path from a to d. Can I use dynamic programming for this?

3.1 The Bell

Let v(x) be the to $v(x) = \begin{cases} \text{tern} \\ \max_{a \in A} \end{cases}$ How can I frame my task as "find an optimal sequence of actions"?

- What are the actions?
- What is the value/cost that I'm optimizing?

$$f_{d} = \frac{1}{2} + \frac{1}{2$$

$$F_{t}(r,n) = \min\left(\min_{w: v \to w} \left\{ weight(v \to w) + F_{t}(w,n-1) \right\}, F_{t}(v,n-1) \right)$$

Boundary condition: $F_t(v, 0) = \begin{cases} if v=t: 0 \text{ path "v" of length 0 is valid, has weight 0} \\ if v t t: 00 \text{ there are no parts from v n t of anyth 0}, \end{cases}$

Theorem

Let g be a directed graph where each edge is labelled with a weight. Assume g has no –ve weight cycles.

Then, $F_t(s, |V| - 1)$ is the minimum weight from s to t over paths of any length.

In words, so find min weight path, so's sufficient to look only at paths with E [VI-] edges

Algorithm

To find a minweight path from s to t, just compute $F_t(s, |V| - 1)$ then reconstruct the optimal programme as usual, by replaying the optimal actions.

EXERCISE. Add in a detection subroutine (similar to Bellman-Ford) that detects whether *g* satisfies the assumption.

From the set of minweight parts from s to t, pick one with the Proof of theorem least number of vertices. Suppose it has > (VI vertices. Then some vertex is repeated, so the part has a cycle. such a cycle has weight 70 (by precondition of theorem) cut it out we get a part that's shorter (ferrer services) and at least as good. X 4 1 V 1 - 1 eclyes. So, the port has & Irl vertices. : hay minweight oter = F_k (s, IVI-1). Thus, between sand t. all pathe smit 6 Y - Qdels

page 25

$$F_{t}(v,n) = \min \left(F_{t}(v,n-1), \min_{\substack{w:v \to W}} \{\text{weight}(v \to w) + F_{t}(w,n-1)\}\right)$$

$$F_{t}(v,0) = \begin{cases} 0 & \text{if } v = t \\ \infty & \text{if } v \neq t \end{cases}$$
Algorithm
To find a minweight path from s to t, just compute $F_{t}(s, |V| - 1)$
then reconstruct the optimal programme as usual.
Running time

Running time

Algorithm

To fill in a row,
$$O(V+E)$$

To fill in the table, $O(V^2 + VE)$

SECTION 5.8 Finding all-to-all shortest paths

Definition

The *betweenness centrality* of an edge is the number of shortest paths that use that edge, considering paths between all pairs of vertices in the graph

What's the cost of finding all-to-all minimum weights?

	cost	cost if $ E = V ^{\alpha}$, $\alpha \in [1,2]$			
$V \times \text{Dijkstra}$ for weights ≥ 0	$V \times O(E + V \log V)$	$O(V^{1+\alpha}+V^2\log V)$			
$V \times Bellman-Ford$	$V \times O(VE)$	$O(V^{2+lpha})$			
$V \times dyn.prog.$	$V \times O(V^2 + VE)$	$O(V^{2+lpha})$ See Discrete Maths lecture			
dynamic prog. with matrix trick	$O(V^3 \log V)$	$O(V^3 \log V)$	$\log V$)	14 for how to write the Bellman recursion as a matrix multiplication.	
Johnson	same as Dijkstra, but works with -ve edge weights		The $(n \times n)$ -matrix $M = mat(R)$ of a finite directed graph $([n], R)$ for n a positive integer is called its <u>adjacency matrix</u> . The adjacency matrix $M^* = mat(R^{\circ*})$ can be computed by matrix multiplication and addition as M_n where $\begin{cases} M_0 = I_n \\ M_{k+1} = I_n + (M \cdot M_k) \end{cases}$ This gives an algorithm for establishing or refuting the existence of paths in finite directed graphs.		

page 27

Johnson's algorithm

4. Translation

minweight(p to q) = distance'(p to q) - d_p + d_q

CLAIM. This computer correct minweights in the original graph.

(4)

page 28 Stronger claim: Lemma. The translation step computes correct minweights: minweight(*p* to *q*) = distance'(*p* to *q*) - $d_p + d_q$ For every path pmpg. weight in - weight in - dp+dg original helper original: helper: 3 0 Dijkswa finds least-weight patty 2 0 7 in helper gruph. Because the ordering of parts is the same, it finds least-weight patty in original graph. edge weights $w(u \rightarrow v)$ $w'(u \rightarrow v) = d_u + w(u \rightarrow v) - d_v$ Proof Consider any parts $V_0 \rightarrow V_1 \rightarrow \cdots \rightarrow V_k$ $W(V_0 - V_1) + W(V_1 - V_2) + \cdots + W(V_{e-1} - V_k)$ Weight in original: $W'(V_0 \rightarrow V_1) + W'(V_1 \rightarrow V_2) + \cdots + W'(V_{k-1} \rightarrow V_R)$ weight in halper: $= d_{v_0} + w (v_0 - v_1) - d_{v_1}$ + $q_1 v_1 + w(v_1 \rightarrow v_2) - q_1 v_2$ + $q_1 v_1 + w(v_1 \rightarrow v_2) - q_1 v_2$ + $q_1 v_1 + w(v_{k-1} \rightarrow v_k)$ $= d_{V_0} + w(V_0 - v_1) + w(V_1 - v_2) + \cdots + w(V_{k-1} - v_k) - d_k$ = dp + weight in original - dg

Johnson's algorithm is an example of the *translation strategy*.

