SECTION 5.7 Using dynamic programming to find shortest paths

I'd like to find a minimum-weight path from a to d. Can I use dynamic programming for this?
3.1 The Bell

Let $v(x)$ be the to

$$
v(x)=\left\{\begin{array}{l}
\text { tern } \\
\max _{a \in A}
\end{array}\right.
$$

How can I frame my task as "find an optimal sequence of actions"?

- What are the actions?
- What is the value/cost that I'm optimizing?

mming

let's turn the "shortest part" problem into a problem with a deadline.

Let $F_{t}(v, n)=$ ninweight among all party $\quad V \sim \sim t$ that have $\leq n$ edges.
e.g. $\quad F_{d}(v, 1)= \begin{cases}\text { if } v=c: & 3 \\ \text { if } v=a, b: & \infty \\ \text { if } v=d: & 0\end{cases}$ I'll consider d to be a path

General rape:

$$
F_{t}(r, n)=\min \left(\min _{w: r \rightarrow w}\left\{\text { weight }(r \rightarrow w)+F_{t}(w, n-1)\right\}, F_{t}(r, n-1)\right)
$$

Boundary condition:

Theorem
Let g be a directed graph where each edge is labelled with a weight．
Assume g has no－ie weight cycles．
Then，$F_{t}(s,|V|-1)$ is the minimum weight from s to t over paths of any length．
I in words， 10 find minwaight path，it＇s suftricint no look only at paths with $\leq|V|-\mid$ edge！
Algorithm
To find a minweight path from s to t ，just compute $F_{t}(s,|V|-1)$ then reconstruct the optimal programme as usual，by replaying the optimal actions．

Proof of thooven From the get of minweight parts from s to t ．pick ore wive the least number of vertices．Suppose it has $>|V|$ vertices．Then some vertex is repeated．so the port has a cycle．

so if we cut it out we get a pash That＇s shorter（fever vertices）and at least
as good．犾
So，the part has $\leq|v|$ vertices．\therefore has $\leq|v|-\mid$ edges．
Thus，between s and t ．

$$
\begin{aligned}
\text { min weight over } \\
\text { all parve snot }
\end{aligned}=\begin{aligned}
& \text { min weight over } \\
& \text { all path sort } \\
& \text { of } \leqslant|v|-1 \text { edges }
\end{aligned}=F_{t}(s,|v|-1) .
$$

$$
\begin{aligned}
& F_{t}(v, n)=\min \left(F_{t}(v, n-1), \min _{w: v \rightarrow w}\left\{\operatorname{weight}(v \rightarrow w)+F_{t}(w, n-1)\right\}\right) \\
& F_{t}(v, 0)= \begin{cases}0 & \text { if } v=t \\
\infty & \text { if } v \neq t\end{cases}
\end{aligned}
$$

Algorithm

To find a minweight path from s to t, just compute $F_{t}(s,|V|-1)$ then reconstruct the optimal programme as usual.

Running time

To fill in a row, $O(V+E)$
To fill in the table, $O\left(v^{2}+V E\right)$

Fully $\begin{aligned} & \text { connerined }\end{aligned}$
Intermediate
$E=\Theta\left(V^{\kappa}\right)$
$E=v(r-1)$
$\alpha \in[1,2]$

| Dijkstra
 if all weights ≥ 0 | $O(E+V \log V)$ | $O(v \log v)$ |
| :--- | :--- | :--- |$O\left(v^{2}\right) \quad O\left(v^{\alpha}+v \log v\right)$

Bellman-Ford $\quad O(V E)$
$O\left(v^{2}\right)$
$O\left(r^{3}\right)$
$O\left(V^{1+\infty}\right)$
dynamic prog. $O\left(V^{2}+V E\right)$
$o\left(v^{2}\right)$
$o\left(v^{3}\right)$

SECTION 5.8
Finding all-to-all shortest paths

Definition

The betweenness centrality of an edge is the number of shortest paths that use that edge, considering paths between all pairs of vertices in the graph

	cost	cost if $\|E\|=\|V\|^{\alpha}, \alpha \in[1,2]$
$V \times$ Dijkstra for weights ≥ 0	$V \times O(E+V \log V)$	$O\left(V^{1+\alpha}+V^{2} \log V\right)$
$V \times$ Bellman-Ford	$V \times O(V E)$	$O\left(V^{2+\alpha}\right)$
$V \times$ dyn.prog.	$V \times O\left(V^{2}+V E\right)$	$O\left(V^{2+\alpha}\right)$

Johnson's algorithm

0. The graph where we want all-to-all minweights

Denote the edge weights by $w(u \rightarrow v)$

1. The augmented graph

Add a new vertex s, and run Bellman-Ford to compute minimum weights from s,

$$
d_{v}=\operatorname{minweight}(s \text { to } v)
$$

2. The helper graph

Define a new graph with modified edge weights

$$
\begin{aligned}
& \underbrace{w^{\prime}(u \rightarrow v)}=d_{u}+w(u \rightarrow v)-d_{v} \\
& -w^{\prime}=0+4-(-3)=7
\end{aligned}
$$

3. Run Dijkstra to get all-to-all distances in the helper graph, distance' (u to v) CLAIM: $w^{\prime} \geqslant 0$ on all edges.

4. Translation

$\operatorname{minweight}(p$ to $q)=\operatorname{distance}^{\prime}(p$ to $q)-d_{p}+d_{q}$
CLAIM. This computes rorreere minweights in the aripinal graph.

edge weights $w(u \rightarrow v)$

$$
d_{v}=\operatorname{minweight}(s \text { to } v)
$$

helper:

$w^{\prime}(u \rightarrow v)=d_{u}+w(u \rightarrow v)-d_{v}$

consider path from in the augmented graph.
We know. from edge relaxation, that

$$
d_{v} \leqslant d_{u}+w(u \rightarrow v)
$$

Rearranging.

Lemma. The translation step computes correct minweights:
$\operatorname{minweight}(p$ to $q)=\operatorname{distance}^{\prime}(p$ to $q)-d_{p}+d_{q}$

edge weights $w(u \rightarrow v)$

Stronger claim:
for every path pro.

$$
\begin{gathered}
\text { weight in } \\
\text { original }
\end{gathered}=\begin{gathered}
\text { weighting } \\
\text { helper }
\end{gathered}-d_{p}+d_{q}
$$

Dijkswen finds least-weight parley. in helper graph. Because the ordaining of parks is the same. it finds keast-weigut paths in original graph.

Prof er consider any part

$$
w^{\prime}(u \rightarrow v)=d_{u}+w(u \rightarrow v)-d_{v}
$$

$$
P_{v_{1}} \rightarrow v_{1} \rightarrow \cdots \rightarrow v_{k}^{\prime q}
$$

Weight in original:

$$
\begin{aligned}
& w\left(v_{0} \rightarrow v_{1}\right)+w\left(v_{1} \rightarrow v_{2}\right)+\cdots+w\left(v_{e-1} \rightarrow v_{k}\right) \\
& w^{\prime}\left(v_{0} \rightarrow v_{1}\right)+w^{\prime}\left(v_{1} \rightarrow v_{2}\right) \leftarrow \cdots+w^{\prime}\left(v_{k-1} \rightarrow v_{k}\right)
\end{aligned}
$$

$$
=d_{v_{0}}+w\left(v_{0} \rightarrow v_{1}\right)-d_{1}
$$

$$
+d v_{1}+w\left(v_{1} \rightarrow v_{2}\right) \sim r^{1} / v_{2}+d y_{2-1}+w\left(v_{k-1} \rightarrow v_{k}\right)
$$

$$
=d_{v_{0}}+w\left(v_{0} \rightarrow v_{1}\right)+w\left(v_{1} \rightarrow v_{2}\right) \cdots+w\left(v_{e-1} \rightarrow v_{k}\right)-d_{k}
$$

$=d_{p}+$ weight in original $-d_{q}$

0 . The graph where we want all-to-all minweights

Denote the edge weights by $w(u \rightarrow v)$

2. The helper graph

Define a new graph with modified edge weights

$$
w^{\prime}(u \rightarrow v)=d_{u}+w(u \rightarrow v)-d_{v}
$$

This Dijkstra step dominates the cords. The total cost is $O\left(V E+V^{2} \log V\right)$, the same os V runs of Dijkstra.

Johnson's algorithm is an example of the translation strategy.

