
My beautiful code can’t be 
wrong! It must be a bug in 
the tester!

Actually, when I do it by hand, I 
get the answer the tester 
expects. But where’s the bug?

All my logic SEEMS right! I’ll 
set a breakpoint where it’s 
about to go wrong, and step 
through.



I call this the “breakpoint” proof strategy.

Assertion (line 9). 
Just after a vertex 𝑣 is popped,  𝑣.distance = distance(𝑠 to 𝑣) 
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CLAIM: This assertion never fails.

PROOF: Suppose it does fail. Consider the instant 𝑇 at which it first fails, and let 𝑣 
be the vertex for which it fails.

By assumption, our assertion succeeded at every point prior to 𝑇. We can use this 
to reason about the events leading up to the failure at 𝑇.

We obtain a contradiction. Therefore the supposition is false, i.e. the claim is true.

It’s a proof by induction on program execution ...

1. Decide on a property we want to be true at all times

2. Assume it’s true up to time 𝑇 − 1

3. Show that it must therefore be true at time 𝑇



SECTION 5.5

Algorithms and proofs



Programming is one of the most difficult 
branches of applied mathematics; the 
poorer mathematicians had better 
remain pure mathematicians.

Edsger Dijkstra,
How do we tell truths that might hurt?



PASSIVE LEARNING

▪ read it / watch it

ACTIVE LEARNING

▪ copy it out

▪ hide part of the proof, 
and try to fill it in

▪ identify the “beats” 
of the argument

REFLECTIVE LEARNING

▪ refactor it to be 
more elegant

▪ see if it still works 
when we tweak the 
problem statement

How to learn a proof



Problem statement. Given a directed graph in which each edge is labelled with a cost ≥ 0, and a start vertex 𝑠, 
compute the distance from 𝑠 to every other vertex.

CLAIM. The assertion on line 9 never fails. 
PROOF. By induction on program execution. Suppose it first fails at some vertex 𝑣. Then,

distance 𝑠 to 𝑣 

    < 𝑣.distance

      ≤ 𝑢𝑖.distance

        ≤ 𝑢𝑖−1.distance + cost 𝑢𝑖−1 → 𝑢𝑖

          = distance 𝑠 to 𝑢𝑖−1 + cost 𝑢𝑖−1 → 𝑢𝑖

            ≤ distance(𝑠 to 𝑣)

1
2
3
4
5

6
7
8
9

10
11
12
13
14
15
16
17
18

def dijkstra(g, s):
for v in g.vertices:

v.distance = ∞
s.distance = 0
toexplore = PriorityQueue([s], 

sortkey = 𝜆v: v.distance)

while not toexplore.is_empty():
v = toexplore.popmin()
# Assert: v.distance is distance(s to v)
# Assert: v is never put back into toexplore
for (w,edgecost) in v.neighbours:

dist_w = v.distance + edgecost
if dist_w < w.distance:

w.distance = dist_w
if w in toexplore:

toexplore.decreasekey(w)
else:

toexplore.push(w)





Give pseudocode for an algorithm that
finds all shortest paths between a given pair
of nodes, on a directed graph.





This code is meant to find all shortest paths between a pair of nodes in a graph. 
However, I’m not sure it’s correct. Is there a problem with this code?

The problem with this code is that it does not necessarily find all shortest paths 
between the given pair of nodes in the graph.

The code uses Breadth-First Search (BFS) to explore the graph and finds the 
shortest path from the start node to the end node. However, it only adds the 
first path that it finds to the `paths` list, and does not continue searching for 
other shortest paths.

To find all shortest paths between the given pair of nodes, the code needs to be 
modified to continue searching for other paths after finding the first shortest 
path. One way to do this is to use a `visited` set to keep track of the visited 
nodes and add all paths with the same length as the shortest path found so far 
to the `paths` list.



I am ∀belard. The 

code is correct: for all 
inputs, 𝐴 = 𝐵.

I am ∃loise. The code is 

incorrect: there exists an 
input for which the set

𝐴 = {paths returned}
is not equal to the set

𝐵 = {shortest paths}

This code is meant to find all shortest paths between a pair of nodes in a graph. 
However, I’m not sure it’s correct. Is there a problem with this code?





Right

Wrong

Not even wrong
Wolfgang Pauli (1900–1958)

“Das ist nicht nur nicht richtig; 
es ist nicht einmal falsch”

Types of answer to a question



Exam question. Let dijkstra_path(𝑔,𝑠,𝑡) be an implementation of 

Dijkstra’s shortest path algorithm that returns the shortest path from 

vertex 𝑠 to vertex 𝑡 in a graph 𝑔. Prove that the implementation can safely 

terminate when it first encounters vertex 𝑡.

PROPOSED ANSWER.

At the moment when the vertex 𝑡 is popped from the priority queue, it 

has to be the vertex in the priority queue with the least distance from 𝑠. 

This means that any other vertex in the priority queue has distance ≥ 

that for 𝑡. Since all edge weights in the graph are ≥ 0, any path from 𝑠 to 

𝑡 via anything still in the priority queue will have distance ≥ that of the 

distance from 𝑠 to 𝑡 when it is popped, thus the distance to 𝑡 is correct 

when 𝑡 is popped.

𝑠 𝑣

𝑢

𝑡
cost 2 cost 3

dist=0 dist=2

dist=∞

dist=5
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already popped in priority queue



“This algorithm is correct.”

When we evaluate a claim, our answer is either ∀ or ∃

▪ ∀ inputs, the algorithm’s output is correct

▪ ∃ input for which the algorithm’s output is incorrect

“This proof is correct.”

When the conclusion is true and we’re evaluating a proof, 
our answer is again either ∀ or ∃

▪ ∀ steps of the proof, ∀ cases that satisfy the step’s premise, 
the step’s conclusion is correct

▪ ∃ a step of the proof, ∃ a case satisfying the step’s premise, 
for which its conclusion is false



Proof strategies

❖ Breakpoint strategy 
(a type of proof by induction)

❖ Reductio ad absurdum 
(proof by contradiction)

❖ Reductio ad nauseam

❖ Proof by assignment

❖ Proof by sleight of timetable



SECTION 5.6

Graphs with negative 
edge weights



𝑡

𝑠

game states where we’ve 
drunk the potion

+5

game states where we’ve 
not drunk the potion

𝑠𝑡

▪ the “drink potion” edge has cost -5
▪ all other edges have cost 1

What is the minimum cost path from 𝑠 to 𝑡?
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way out

Goal: reach the way out before your health runs out.
You can move one step per tick, and your health runs out one unit per tick. 
There is a health potion — but is it worth the detour?



What’s the issue with negative edge weights?

𝑠

weight 𝑠 → 𝑡 → 𝑢 = 4

weight 𝑠 → 𝑡 → (𝑢 → 𝑣 → 𝑡) → 𝑢 = 3

weight 𝑠 → 𝑡 → (𝑢 → 𝑣 → 𝑡) → (𝑢 → 𝑣 → 𝑡) → 𝑢 = 2

minweight 𝑠 → 𝑢 = −∞

𝑡

𝑢

𝑣
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On this graph, Dijkstra’s algorithm will get stuck in an infinite loop.



Clearly, in graphs with negative edge weights, the proof of correctness of 
Dijkstra’s algorithm is invalid. What goes wrong?



EXERCISE (ex4 q13)
Run Dijkstra’s algorithm by hand on these two 
graphs. What happens?

𝑠

Dijkstra’s algorithm 
terminates, with the 
correct distances

Dijkstra’s algorithm 
gets stuck in an 
infinite loop

▪ Could we add a check to 
Dijkstra’s algorithm, so 
that we can run it safely 
on any graph?

▪ For graphs where it 
terminates, is it always 
correct?

▪ If so, is it a good 
algorithm, or are there 
better algorithms?

𝑠



SECTION 5.6

Bellman-Ford

How can we find minimum-cost paths in 
graphs where some edge costs may be 
negative?



𝑠

𝑢

𝑣𝑢.minweight=15

𝑣.minweight=21

Edge relaxation

We’re looking for minimum-weight paths from 𝑠

For each vertex 𝑤, let’s store the minimum weight that we’ve found 
so far. Call it 𝑤.minweight.

If there’s an edge 𝑢 → 𝑣, we may be able to improve 𝑣.minweight:

if 𝑢.minweight + weight(𝑢 → 𝑣) < 𝑣.minweight:
 set 𝑣.minweight = 𝑢.minweight + weight(𝑢 → 𝑣)



Bellman-Ford algorithm
Just keep on relaxing all the edges in the graph, over and over again!
(It only takes 𝑉 rounds.)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

def bf(g, s):
for every vertex v:

v.minweight = ∞
s.minweight = 0

repeat V − 1 times:
for every edge e in the graph:

relax e

for every edge e in the graph:
relax e

if this final pass results in a change:
raise Exception(“negative-weight cycle detected”)

else:
return the v.minweight values

Theorem
Given a directed graph 𝑔 where each edge is labelled with a weight, 
and given a start vertex 𝑠,
▪ if 𝑔 has no -ve weight cycles reachable from 𝑠, this algorithm 

finds the true minimum weight from 𝑠 to every other vertex
▪ otherwise, it throws an exception

𝑠

𝑢

𝑣𝑢.minweight=15

𝑣.minweight=21
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