
My beautiful code can’t be
wrong! It must be a bug in
the tester!

Actually, when I do it by hand, I
get the answer the tester
expects. But where’s the bug?

All my logic SEEMS right! I’ll
set a breakpoint where it’s
about to go wrong, and step
through.

I call this the “breakpoint” proof strategy.

Assertion (line 9).
Just after a vertex 𝑣 is popped, 𝑣.distance = distance(𝑠 to 𝑣)

page 14

CLAIM: This assertion never fails.

PROOF: Suppose it does fail. Consider the instant 𝑇 at which it first fails, and let 𝑣
be the vertex for which it fails.

By assumption, our assertion succeeded at every point prior to 𝑇. We can use this
to reason about the events leading up to the failure at 𝑇.

We obtain a contradiction. Therefore the supposition is false, i.e. the claim is true.

It’s a proof by induction on program execution ...

1. Decide on a property we want to be true at all times

2. Assume it’s true up to time 𝑇 − 1

3. Show that it must therefore be true at time 𝑇

SECTION 5.5

Algorithms and proofs

Programming is one of the most difficult
branches of applied mathematics; the
poorer mathematicians had better
remain pure mathematicians.

Edsger Dijkstra,
How do we tell truths that might hurt?

PASSIVE LEARNING

▪ read it / watch it

ACTIVE LEARNING

▪ copy it out

▪ hide part of the proof,
and try to fill it in

▪ identify the “beats”
of the argument

REFLECTIVE LEARNING

▪ refactor it to be
more elegant

▪ see if it still works
when we tweak the
problem statement

How to learn a proof

Problem statement. Given a directed graph in which each edge is labelled with a cost ≥ 0, and a start vertex 𝑠,
compute the distance from 𝑠 to every other vertex.

CLAIM. The assertion on line 9 never fails.
PROOF. By induction on program execution. Suppose it first fails at some vertex 𝑣. Then,

distance 𝑠 to 𝑣

 < 𝑣.distance

 ≤ 𝑢𝑖.distance

 ≤ 𝑢𝑖−1.distance + cost 𝑢𝑖−1 → 𝑢𝑖

 = distance 𝑠 to 𝑢𝑖−1 + cost 𝑢𝑖−1 → 𝑢𝑖

 ≤ distance(𝑠 to 𝑣)

1
2
3
4
5

6
7
8
9

10
11
12
13
14
15
16
17
18

def dijkstra(g, s):
for v in g.vertices:

v.distance = ∞
s.distance = 0
toexplore = PriorityQueue([s],

sortkey = 𝜆v: v.distance)

while not toexplore.is_empty():
v = toexplore.popmin()
Assert: v.distance is distance(s to v)
Assert: v is never put back into toexplore
for (w,edgecost) in v.neighbours:

dist_w = v.distance + edgecost
if dist_w < w.distance:

w.distance = dist_w
if w in toexplore:

toexplore.decreasekey(w)
else:

toexplore.push(w)

Give pseudocode for an algorithm that
finds all shortest paths between a given pair
of nodes, on a directed graph.

This code is meant to find all shortest paths between a pair of nodes in a graph.
However, I’m not sure it’s correct. Is there a problem with this code?

The problem with this code is that it does not necessarily find all shortest paths
between the given pair of nodes in the graph.

The code uses Breadth-First Search (BFS) to explore the graph and finds the
shortest path from the start node to the end node. However, it only adds the
first path that it finds to the `paths` list, and does not continue searching for
other shortest paths.

To find all shortest paths between the given pair of nodes, the code needs to be
modified to continue searching for other paths after finding the first shortest
path. One way to do this is to use a `visited` set to keep track of the visited
nodes and add all paths with the same length as the shortest path found so far
to the `paths` list.

I am ∀belard. The

code is correct: for all
inputs, 𝐴 = 𝐵.

I am ∃loise. The code is

incorrect: there exists an
input for which the set

𝐴 = {paths returned}
is not equal to the set

𝐵 = {shortest paths}

This code is meant to find all shortest paths between a pair of nodes in a graph.
However, I’m not sure it’s correct. Is there a problem with this code?

Right

Wrong

Not even wrong
Wolfgang Pauli (1900–1958)

“Das ist nicht nur nicht richtig;
es ist nicht einmal falsch”

Types of answer to a question

Exam question. Let dijkstra_path(𝑔,𝑠,𝑡) be an implementation of

Dijkstra’s shortest path algorithm that returns the shortest path from

vertex 𝑠 to vertex 𝑡 in a graph 𝑔. Prove that the implementation can safely

terminate when it first encounters vertex 𝑡.

PROPOSED ANSWER.

At the moment when the vertex 𝑡 is popped from the priority queue, it

has to be the vertex in the priority queue with the least distance from 𝑠.

This means that any other vertex in the priority queue has distance ≥

that for 𝑡. Since all edge weights in the graph are ≥ 0, any path from 𝑠 to

𝑡 via anything still in the priority queue will have distance ≥ that of the

distance from 𝑠 to 𝑡 when it is popped, thus the distance to 𝑡 is correct

when 𝑡 is popped.

𝑠 𝑣

𝑢

𝑡
cost 2 cost 3

dist=0 dist=2

dist=∞

dist=5

page 19

already popped in priority queue

“This algorithm is correct.”

When we evaluate a claim, our answer is either ∀ or ∃

▪ ∀ inputs, the algorithm’s output is correct

▪ ∃ input for which the algorithm’s output is incorrect

“This proof is correct.”

When the conclusion is true and we’re evaluating a proof,
our answer is again either ∀ or ∃

▪ ∀ steps of the proof, ∀ cases that satisfy the step’s premise,
the step’s conclusion is correct

▪ ∃ a step of the proof, ∃ a case satisfying the step’s premise,
for which its conclusion is false

Proof strategies

❖ Breakpoint strategy
(a type of proof by induction)

❖ Reductio ad absurdum
(proof by contradiction)

❖ Reductio ad nauseam

❖ Proof by assignment

❖ Proof by sleight of timetable

SECTION 5.6

Graphs with negative
edge weights

𝑡

𝑠

game states where we’ve
drunk the potion

+5

game states where we’ve
not drunk the potion

𝑠𝑡

▪ the “drink potion” edge has cost -5
▪ all other edges have cost 1

What is the minimum cost path from 𝑠 to 𝑡?

page 21

way out

Goal: reach the way out before your health runs out.
You can move one step per tick, and your health runs out one unit per tick.
There is a health potion — but is it worth the detour?

What’s the issue with negative edge weights?

𝑠

weight 𝑠 → 𝑡 → 𝑢 = 4

weight 𝑠 → 𝑡 → (𝑢 → 𝑣 → 𝑡) → 𝑢 = 3

weight 𝑠 → 𝑡 → (𝑢 → 𝑣 → 𝑡) → (𝑢 → 𝑣 → 𝑡) → 𝑢 = 2

minweight 𝑠 → 𝑢 = −∞

𝑡

𝑢

𝑣

page 21

On this graph, Dijkstra’s algorithm will get stuck in an infinite loop.

Clearly, in graphs with negative edge weights, the proof of correctness of
Dijkstra’s algorithm is invalid. What goes wrong?

EXERCISE (ex4 q13)
Run Dijkstra’s algorithm by hand on these two
graphs. What happens?

𝑠

Dijkstra’s algorithm
terminates, with the
correct distances

Dijkstra’s algorithm
gets stuck in an
infinite loop

▪ Could we add a check to
Dijkstra’s algorithm, so
that we can run it safely
on any graph?

▪ For graphs where it
terminates, is it always
correct?

▪ If so, is it a good
algorithm, or are there
better algorithms?

𝑠

SECTION 5.6

Bellman-Ford

How can we find minimum-cost paths in
graphs where some edge costs may be
negative?

𝑠

𝑢

𝑣𝑢.minweight=15

𝑣.minweight=21

Edge relaxation

We’re looking for minimum-weight paths from 𝑠

For each vertex 𝑤, let’s store the minimum weight that we’ve found
so far. Call it 𝑤.minweight.

If there’s an edge 𝑢 → 𝑣, we may be able to improve 𝑣.minweight:

if 𝑢.minweight + weight(𝑢 → 𝑣) < 𝑣.minweight:
 set 𝑣.minweight = 𝑢.minweight + weight(𝑢 → 𝑣)

Bellman-Ford algorithm
Just keep on relaxing all the edges in the graph, over and over again!
(It only takes 𝑉 rounds.)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

def bf(g, s):
for every vertex v:

v.minweight = ∞
s.minweight = 0

repeat V − 1 times:
for every edge e in the graph:

relax e

for every edge e in the graph:
relax e

if this final pass results in a change:
raise Exception(“negative-weight cycle detected”)

else:
return the v.minweight values

Theorem
Given a directed graph 𝑔 where each edge is labelled with a weight,
and given a start vertex 𝑠,
▪ if 𝑔 has no -ve weight cycles reachable from 𝑠, this algorithm

finds the true minimum weight from 𝑠 to every other vertex
▪ otherwise, it throws an exception

𝑠

𝑢

𝑣𝑢.minweight=15

𝑣.minweight=21

	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20: What’s the issue with negative edge weights?
	Slide 21
	Slide 23
	Slide 24
	Slide 25
	Slide 26

