All my logic SEEMS right! [l
set a breakpoint where it's

about to go wrong, and step
through.

My beautiful code can't be
wrong! It must be a bug in
the tester!

Actually, when | do it by hand, |
get the answer the tester
expects, But where's the bug?

Edit Selection View Go Run Terminal Help

> Qf

x_welght_alloc(requests):
print(requests)
first_start = min(r.start for r in requests)
last_end = max(r.end for r in requests)
_, list_of_labels = f(first_start, last_end, requests)
return list_of_labels

N ou bk wN RS
c

WD 0

503; thic cache sk cloowed T cacls.
ewds op '!-Uﬁl\vj cachad yolvas from
def f(i, j, requests): {)M(\NS Pf°.b(ﬂ—w‘ imsh"as-

if (i, j) in memo:
return memo[(i, j)]
if 1 == j:
return @, []
X = [r for r in requests if r.start >= 1 and r.end <= j]
if not X:
return @, []

max_val = @8
max_req = X[@]
max_req_before_out = X[0]

mav mam aftan A+ = ¥YIial
max_req = KTG]

max_req_before_out = X[@]

Assertion (line 9).
Just after a vertex v is popped, v.distance = distance(s to v)

CLAIM: This assertion never fails.

PROOF: Suppose it does fail. Consider the instant T at which it first fails, and let v
be the vertex for which it fails.

By assumption, our assertion succeeded at every point prior to T. We can use this
to reason about the events leading up to the failure at T.

We obtain a contradiction. Therefore the supposition is false, i.e. the claim is true.

| call this the “breakpoint” proof strategy.

It’s a proof by induction on program execution ...
1. Decide on a property we want to be true at all times
2. Assume it’strueuptotimeT — 1

3. Show that it must therefore be true at time T

page 14

SECTION 5.5
Algorithms and proofs

Programming is one of the most difficult
branches of applied mathematics; the
poorer mathematicians had better
remain pure mathematicians.

Edsger Dijkstra,
How do we tell truths that might hurt?

How to learn a proof

PASSIVE LEARNING ACTIVE LEARNING REFLECTIVE LEARNING

* read it/ watch it = copy it out = refactor it to be

" hide part of the proof, more elegant

and try to fill it in = see if it still works
when we tweak the

= jdentify the “beats”
problem statement

of the argument

Problem statement. Given a directed graph in which each edge is labelled with a cost = 0, and a start vertex s,
compute the distance from s to every other vertex.

CLAIM. The assertion on line 9 never fails.
PROOF. By induction on program execution. Suppose it first fails at some vertex v. Then,

distance(sto v)

< v.distance from ovi Mekvcéion sopposihicnn

< y;.distance by the natore & e priorityqueut

def)dijkstra(g, s):

for v in g.vertices:
v.distance =

s.distance = 0

toexplore = PriorityQueue([s],
sortkey = Av: v.distance)

< u;qp.distance + cost(u;_1 = U;) edye relaehdn by

= distance(s to u;_1) + cost(u;j_; = u;) MweHon
V\jpoﬁ/‘e&(s

< distance(s to v)

“ ") while not toexplore.is_empty():
ot (Ae p pty
E\J@rj be S? e Pre J reuss v = toexplore.popmin()
on soive cr\)a‘ai PM 5‘ COO‘Q/ oY

for (w,edgecost) in v.neighbours:
dist_w = v.distance + edgecost
if dist_w < w.distance:
w.distance = dist_w
if w in toexplore:
toexplore.decreasekey(w)
else:
toexplore.push(w)

on om abssuwwpéfan.

n "

(EXERCHE. wWhve (3t a,;guw)ohém O 20
Vsed tn Hais prost 7))

Example sheet 4

Graphs and path finding
Algorithms—DJW*-2022/2023

Question 6. Modify bfs_path(g, s,) to find all shortest paths from s to ¢. [There is a tester, linked to on the course
website, for you to check your code. |

Jo

M

53

New chat X

Crow and Dryad's Dance

Maximizing UK's Prosperity F

Jack and Finnegan

Story Of Mysterious Superna

Light Modern Dinner Party v

BFS Shortest Path Algorithm

Clear conversations
Upgrade to Plus NEW
Dark mode

Updates & FAQ

Log out

;//chat.openai.com/chat

+

‘(I)’
Pty

Examples

"Explain quantum
computing in simple
terms" —

"Got any creative
ideas for a 10 year
old’s birthday?" —

"How do | make an
HTTP request in
Javascript?" —

A @

ChatGPT

%

Capabilities

Remembers what user
said earlier in the
conversation

Allows user to provide
follow-up corrections

Trained to decline
inappropriate
requests

Limitations

May occasionally
generate incorrect
information

May occasionally
produce harmful
instructions or biased
content

Limited knowledge of
world and events after
2021

Give pseudocode for an algorithm that
finds all shortest paths between a given pair
of nodes, on a directed graph.

Here is the pseudocode for finding all shortest paths between a given pair of

nodes using Breadth-First Search (BFS) algorithm:
m Copy code

BFS shortest paths(graph, start, end):
queue [1
paths [1
visited = set()
queue.append((start, [start]))

visited.add(start)

while queue:
node, path = queue.pop(9)
if node == end:
paths.append(path)
for neighbor in graph[node]:
if neighbor not in visited:
queue.append((neighbor, path + [neighbor]))

visited.add(neighbor)

return paths

Note: The ~graph™ variable is a dictionary where each key is a node and its

values are a list of neighbors of that node. The “start™ and ~end" variables are

the nodes between which the shortest paths are to be found.

This code is meant to find all shortest paths between a pair of nodes in a graph.
However, I’'m not sure it’s correct. Is there a problem with this code?

The problem with this code is that it does not necessarily find all shortest paths
between the given pair of nodes in the graph.

The code uses Breadth-First Search (BFS) to explore the graph and finds the
shortest path from the start node to the end node. However, it only adds the
first path that it finds to the “paths’ list, and does not continue searching for
other shortest paths.

To find all shortest paths between the given pair of nodes, the code needs to be
modified to continue searching for other paths after finding the first shortest
path. One way to do this is to use a “visited" set to keep track of the visited
nodes and add all paths with the same length as the shortest path found so far
to the “paths’ list.

This code is meant to find all shortest paths between a pair of nodes in a graph.
However, I’'m not sure it’s correct. Is there a problem with this code?

_ | am Vbelard. The
| am Jloise. The code is code is correct: for all
incorrect: there exists an inputs, 4 = B.

input for which the set

A = {paths returned}
is not equal to the set
B = {shortest paths}

How do we prove éars

50Tt I recott? Typleelly
b‘y praw‘vy AcB ol BEA
I'm exped-fv Hege op the " beats’

of rbe prsf.

v Efg Algarithms challenge chatgpt-I X +

< C 25 cl.cam.ac.uk/teaching/2324/Algorithm1/ticks/chatgpt-bfs.html w O Z2 93 0

Algorithms challenge: chatgpt-bfs

Ask ChatGPT to prove a graph algorithm
correct

Find prompts that instruct ChatGPT to produce a valid algorithm for solving tick bfs-all.
Then find prompts that instruct ChatGPT to give a valid proof that its algorithm is correct.

Submit a text document (.txt, .rtf, .docx, .odt) containing both sides of your dialogue, including
the finished algorithm, on Moodle.

You should run the algorithm through the tester for bfs-all. You may make syntactical tweaks if
necessary to turn the code into valid Python. If you can’t get it to produce a valid algorithm, you
may use your own algorithm instead.

Types of answer to a question

Right
Wrong

Not even wrong

Wolfgang Pauli (1900-1958)

“Das ist nicht nur nicht richtig;
es ist nicht einmal falsch”

_ . _) page 19
Exam question. Let dijkstra_path(g,s,t) be an implementation of

Dijkstra’s shortest path algorithm that returns the shortest path from

vertex s to vertex t in a graph g. Prove that the implementation can safely V,disCam(& = O("$C'<W\C2 G o v)
. . . _J — /']
terminate when it first encounters vertex t. FZompvced o ted
PROPOSED ANSWER. y
At the moment when the vertex t is popped from the priority queue, it QQMP\’ Ce
i jori ith the least distance f : \
has to be the vertex in the priority queue with the least distance rw P\/ o

This means that any other vertex in the priority queue has distance > _~_ <™
that for t. Since all edge weights in the graph are = 0,’any path from s to P'M
t via anything still in the priority queue vyjll have distance = that of t

- ae® o, _—

distance frgm s to t when it is poppzé, thus the distance to t is correct

9 M Maﬂ'l‘ccv(

when t is popped.

Fee §—pV—oUW Tt parh dist=co
her s K. > u%‘
FUM”MM pm@("‘"? cost 2 » cost 3 Nt
'y qULsNM olemanls o pr]
Tims 9 , dist=0 dist=2 dist=5
b ‘nelve trem.
gy N J N o J

Y
already popped in priority queue

“This algorithm is correct.”

When we evaluate a claim, our answer is either V or 3
= Vinputs, the algorithm’s output is correct
= 3 input for which the algorithm’s output is incorrect

“This proof is correct.”

When the conclusion is true and we’re evaluating a proof,
our answer is again either V or 3

=V steps of the proof, V cases that satisfy the step’s premise,
the step’s conclusion is correct

= 3 astep of the proof, 3 a case satisfying the step’s premise,
for which its conclusion is false

Proof strategies

» Breakpoint strategy
(a type of proof by induction)

»* Reductio ad absurdum
(proof by contradiction)

** Reductio ad nauseam
»* Proof by assignment

** Proof by sleight of timetable

SECTION 5.6
Graphs with negative

edge weights

Goal: reach the way out before your health runs out. page 21
You can move one step per tick, and your health runs out one unit per tick.
There is a health potion — but is it worth the detour?

O @, O
game states where we’ve
Py P o drunk the potion
S5
t .———.S
] game states where we’ve
way OUt| S, ? o &—oO not drunk the potion

= the “drink potion” edge h

© o o © = all other edges have cost 1

What is t msto t?

lak § Use termg ~ edge ‘“"']“t‘
amd ~ minimum WC{‘,“ rql"\’.

page 21

What’s the issue with negative edge weights?

weight(s >t > u) =4
weight(s >t > (u—-v->t)-u)=3

weight(s > t-> (u-v-t) > (u-v-t)-u) =2

minweight(s - u) = —oo

A cycle o weu:,l\t -|

On this graph, Dijkstra’s algorithm will get stuck in an infinite loop.

Clearly, in graphs with negative edge weights, the proof of correctness of
Dijkstra’s algorithm is invalid. What goes wrong?

Problem statement. Given a directed graph in which each edge is labelled with{a cost > 0,
and a start vertex s, compute the distance from s to every other vertex.

CLAIM. The assertion on line 9 never fails.
PROOF. By induction on program execution. Suppose it first fails a#Some vertex v. Then,

distance(s to v)
< v.distance by svppesition (powt presf bj Nt ian)
< u;.distance by cthe paturedy Prierify Quede
u,;) bj 50(3(Relaxahan (ojl‘(_
= distance(s to u;_1) + cpst(u;_; = u;) by rueluction hy porbasis

< distance(s tov) sine oM odec apfs are 30
=

Check if govr presf does fedhed v oM youv

Poosf seroreqy .
NI MPI7ang

EXERCISE (ex4 q13)
Run Dijkstra’s algorithm by hand on these two
graphs. What happens?

Di jketra's algorithm

gets stuck in an

infinite loop Dijkstra's algorithm
terminates, with the
correct distances

Could we add a check to
Dijkstra’s algorithm, so
that we can run it safely
on any graph?

For graphs where it
terminates, is it always
correct?

If so, is it a good
algorithm, or are there
better algorithms?

SECTION 5.6
Bellman-Ford

How can we find minimum-cost paths in
graphs where some edge costs may be
hegative?

'\

We, /
@%2
u.minweight=15 @

v.minweightyff
\7

Edge relaxation

We're looking for minimum-weight paths from s

For each vertex w, let’s store the minimum weight that we’ve found
so far. Call it w.minweight.

If there’s an edge u — v, we may be able to improve v.minweight:

if w.minweight + weight(u = v) < v.minweight:
set v.minweight = u.minweight + weight(u — v)

e mwaay
———

Il fheve is an eol?(UV, hen

weirkt (5 B V) £ miwweiyiE(s A w)
Mminweight (5 h V) " Jf we?M(“_'v)

Bellman-Ford algorithm

Just keep on relaxing all the edges in the graph, over and over again!
@\ (It only takes V rounds.)

’ 27N
‘ S def bf(g, s):

for every vertex v:
v.minweight = «
s.minweight = 0

[}

g S R B

\ \/ e c

< , repeat |V| —1 times:
<::::> K for every edge e in the graph:

W . / (S
oh, 5 ¥
. . _ for every edge e in the graph:
u.minweight=15

if this final pass results in a change:
(“nege ght cycle detected”)

FdaloT LACCPULLUN

‘37 else:

return the v.minweight values

Theorem

Given a directed graph g where each edge is labelled with a weight,

and given a start vertex s,

= if g has no -ve weight cycles reachable from s, this algorithm
finds the true minimum weight from s to every other vertex

= otherwise, it throws an exception

	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20: What’s the issue with negative edge weights?
	Slide 21
	Slide 23
	Slide 24
	Slide 25
	Slide 26

