
1  # Visit all the vertices in g reachable from start vertex s
 2  def bfs(g, s):
 3      for v in g.vertices:
 4          v.seen = False
 5      toexplore = Queue([s])
 6      s.seen = True
 7

 8      while not toexplore.is_empty():
 9          v = toexplore.popleft()
10          for w in v.neighbours:
11              if not w.seen:
12                  toexplore.pushright(w)
13                  w.seen = True
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SECTION 5.3

Dijkstra’s algorithm

In a graph where the edges have costs (e.g. 
travel time), we can find shortest paths by 
using a similar “grow the frontier” algorithm 
to bfs.
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def dijkstra(g, s):
for v in g.vertices:

v.distance = ∞
s.distance = 0
toexplore = PriorityQueue([s], sortkey = 𝜆v: v.distance)

while not toexplore.is_empty():
v = toexplore.popmin()
# Assert: v.distance is distance(s to v)
# Assert: v is never put back into toexplore
for (w,edgecost) in v.neighbours:

dist_w = v.distance + edgecost
if dist_w < w.distance:

w.distance = dist_w
if w in toexplore:

toexplore.decreasekey(w)
else:

toexplore.push(w)
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{𝑠, 𝑏, 𝑐} [𝑑, 𝑎]
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So far we’ve made steps have the same “cost”. In some pathfinding 
scenarios there are different costs for different types of movement. We’d 
like the pathfinder to take these costs into account. Let’s compare the 
number of steps from the start with the distance from the start:
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def dijkstra(g, s):
for v in g.vertices:

v.distance = ∞
s.distance = 0
toexplore = PriorityQueue([s], sortkey = 𝜆v: v.distance)

while not toexplore.is_empty():
v = toexplore.popmin()
# Assert: v.distance is distance(s to v)
# Assert: v is never put back into toexplore
for (w,edgecost) in v.neighbours:

dist_w = v.distance + edgecost
if dist_w < w.distance:

w.distance = dist_w
if w in toexplore:

toexplore.decreasekey(w)
else:

toexplore.push(w)
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Edsger Dijkstra (1930—2002)
On the cruelty of really teaching computer science, 1988



cost(𝑢 → 𝑣) is the cost associated with edge 𝑢 → 𝑣

cost 𝑢 → ⋯ → 𝑣  is the sum of edge costs along the path 𝑢 → ⋯ → 𝑣

distance 𝑢 to 𝑣 = ቐ
min cost of any path 𝑢 → ⋯ → 𝑣,  if one exists
0,  if 𝑢 = 𝑣 
∞,  otherwise 

Problem statement
Given a directed graph in which each edge is labelled with a cost ≥ 0, and a 
start vertex 𝑠, compute the distance from 𝑠 to every other vertex, where …



Theorem. 

i. On a finite graph, the algorithm terminates

ii. When it does, for every vertex 𝑣,      𝑣.distance = distance(𝑠 to 𝑣)

iii. The two assertions never fail
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# Assert: v.distance = distance(s to v)
# Assert: v is never put back into toexplore



Theorem. 

i. On a finite graph, the algorithm terminates

ii. When it does, for every vertex 𝑣,      𝑣.distance = distance(𝑠 to 𝑣)

iii. The two assertions never fail
(9) 𝑣.distance = distance(𝑠 to 𝑣) and (10) 𝑣 is never put back into toexplore

i.e., just after 𝑣 is popped,
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Assertion (line 9). 
Just after a vertex 𝑣 is popped,  𝑣.distance = distance(𝑠 to 𝑣) 
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Assertion (line 10). 
A vertex 𝑣, once popped, is never put back 
into the priority queue

8 v = toexplore.popmin()
 9 # Assert: v.distance is distance(s to v)
10 # Assert: v is never put back into toexplore
11 for (w,edgecost) in v.neighbours:
12     dist_w = v.distance + edgecost
13     if dist_w < w.distance:
14         w.distance = dist_w
15         if w in toexplore:
16             toexplore.decreasekey(w)
17         else:
18             toexplore.push(w)
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PROOF

1. The condition on line 13 ensures that a vertex 𝑤 is only pushed into the priority 
queue when we discover a path shorter than 𝑤.distance

2. Once 𝑣 is popped, 𝑣.distance = distance(𝑠 to 𝑣) (by the assertion on line 9), 
so there can be no shorter path, by definition of “distance”.

Hence 𝑣 is never pushed back.
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