
1 # Visit all the vertices in g reachable from start vertex s
 2 def bfs(g, s):
 3 for v in g.vertices:
 4 v.seen = False
 5 toexplore = Queue([s])
 6 s.seen = True
 7

 8 while not toexplore.is_empty():
 9 v = toexplore.popleft()
10 for w in v.neighbours:
11 if not w.seen:
12 toexplore.pushright(w)
13 w.seen = True

A

B

C

D

E

distance from A = 0

distance from A = 1

distance from A = 2

A

B

C

D

E

page 9

Breadth-first search

Start vertex A

toexplore

Start vertex A

1 # Visit all the vertices in g reachable from start vertex s
 2 def bfs(g, s):
 3 for v in g.vertices:
 4 v.seen = False
 5 toexplore = Queue([s])
 6 s.seen = True
 7

 8 while not toexplore.is_empty():
 9 v = toexplore.popleft()
10 for w in v.neighbours:
11 if not w.seen:
12 toexplore.pushright(w)
13 w.seen = True

A

B

C

D

E

page 9

Breadth-first search

toexplore

https://www.redblobgames.com/pathfinding/a-star/introduction.html#breadth-first-search

https://www.redblobgames.com/pathfinding/a-star/introduction.html#breadth-first-search

SECTION 5.3

Dijkstra’s algorithm

In a graph where the edges have costs (e.g.
travel time), we can find shortest paths by
using a similar “grow the frontier” algorithm
to bfs.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

def dijkstra(g, s):
for v in g.vertices:

v.distance = ∞
s.distance = 0
toexplore = PriorityQueue([s], sortkey = 𝜆v: v.distance)

while not toexplore.is_empty():
v = toexplore.popmin()
Assert: v.distance is distance(s to v)
Assert: v is never put back into toexplore
for (w,edgecost) in v.neighbours:

dist_w = v.distance + edgecost
if dist_w < w.distance:

w.distance = dist_w
if w in toexplore:

toexplore.decreasekey(w)
else:

toexplore.push(w)

s

a

b

c

d

3
8

7

1

e

2

2

popped toexplore

{} [𝑠]

{𝑠} [𝑏, 𝑑, 𝑎]

{𝑠, 𝑏} [𝑐, 𝑑, 𝑎]

{𝑠, 𝑏, 𝑐} [𝑑, 𝑎]

page 13

https://www.redblobgames.com/pathfinding/a-star/introduction.html#dijkstra

So far we’ve made steps have the same “cost”. In some pathfinding
scenarios there are different costs for different types of movement. We’d
like the pathfinder to take these costs into account. Let’s compare the
number of steps from the start with the distance from the start:

https://www.redblobgames.com/pathfinding/a-star/introduction.html#dijkstra

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

def dijkstra(g, s):
for v in g.vertices:

v.distance = ∞
s.distance = 0
toexplore = PriorityQueue([s], sortkey = 𝜆v: v.distance)

while not toexplore.is_empty():
v = toexplore.popmin()
Assert: v.distance is distance(s to v)
Assert: v is never put back into toexplore
for (w,edgecost) in v.neighbours:

dist_w = v.distance + edgecost
if dist_w < w.distance:

w.distance = dist_w
if w in toexplore:

toexplore.decreasekey(w)
else:

toexplore.push(w)

page 13

Edsger Dijkstra (1930—2002)
On the cruelty of really teaching computer science, 1988

cost(𝑢 → 𝑣) is the cost associated with edge 𝑢 → 𝑣

cost 𝑢 → ⋯ → 𝑣 is the sum of edge costs along the path 𝑢 → ⋯ → 𝑣

distance 𝑢 to 𝑣 = ቐ
min cost of any path 𝑢 → ⋯ → 𝑣, if one exists
0, if 𝑢 = 𝑣
∞, otherwise

Problem statement
Given a directed graph in which each edge is labelled with a cost ≥ 0, and a
start vertex 𝑠, compute the distance from 𝑠 to every other vertex, where …

Theorem.

i. On a finite graph, the algorithm terminates

ii. When it does, for every vertex 𝑣, 𝑣.distance = distance(𝑠 to 𝑣)

iii. The two assertions never fail

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

def dijkstra(g, s):
for v in g.vertices:

v.distance = ∞
s.distance = 0
toexplore = PriorityQueue([s], sortkey = 𝜆v: v.distance)

while not toexplore.is_empty():
v = toexplore.popmin()
Assert: v.distance = distance(s to v)
Assert: v is never put back into toexplore
for (w,edgecost) in v.neighbours:

dist_w = v.distance + edgecost
if dist_w < w.distance:

w.distance = dist_w
if w in toexplore:

toexplore.decreasekey(w)
else:

toexplore.push(w)

page 14

Assert: v.distance = distance(s to v)
Assert: v is never put back into toexplore

Theorem.

i. On a finite graph, the algorithm terminates

ii. When it does, for every vertex 𝑣, 𝑣.distance = distance(𝑠 to 𝑣)

iii. The two assertions never fail
(9) 𝑣.distance = distance(𝑠 to 𝑣) and (10) 𝑣 is never put back into toexplore

i.e., just after 𝑣 is popped,

page 14

Assertion (line 9).
Just after a vertex 𝑣 is popped, 𝑣.distance = distance(𝑠 to 𝑣)

page 14

Assertion (line 10).
A vertex 𝑣, once popped, is never put back
into the priority queue

8 v = toexplore.popmin()
 9 # Assert: v.distance is distance(s to v)
10 # Assert: v is never put back into toexplore
11 for (w,edgecost) in v.neighbours:
12 dist_w = v.distance + edgecost
13 if dist_w < w.distance:
14 w.distance = dist_w
15 if w in toexplore:
16 toexplore.decreasekey(w)
17 else:
18 toexplore.push(w)

page 15

PROOF

1. The condition on line 13 ensures that a vertex 𝑤 is only pushed into the priority
queue when we discover a path shorter than 𝑤.distance

2. Once 𝑣 is popped, 𝑣.distance = distance(𝑠 to 𝑣) (by the assertion on line 9),
so there can be no shorter path, by definition of “distance”.

Hence 𝑣 is never pushed back.

	Slide 1
	Slide 2
	Slide 3: https://www.redblobgames.com/pathfinding/a-star/introduction.html#breadth-first-search
	Slide 4
	Slide 5
	Slide 6: https://www.redblobgames.com/pathfinding/a-star/introduction.html#dijkstra
	Slide 7
	Slide 8: Edsger Dijkstra (1930—2002) On the cruelty of really teaching computer science, 1988
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15

