Breadth-first search

Start vertex A

distance from $A=0$
distance from $A=1$
distance from $A=2$

```
# Visit all the vertices in g reachable from start vertex s
def bfs(g, s):
    for v in g.vertices:
    v.seen = False
    toexplore = Queue([s])
    s.seen = True
    while not toexplore.is_empty():
        v = toexplore.popleft()
        for w in v.neighbours:
            if not w.seen:
                toexplore.pushright(w)
                w.seen = True
```


Breadth-first search


```
# Visit all the vertices in g reachable from start vertex s
def bfs(g, s):
    for v in g.vertices:
        v.seen = False
    toexplore = Queue([s])
    s.seen = True
    while not toexplore.is_empty():
        v = toexplore.popleft()
        for w in v.neighbours:
            if not w.seen:
                toexplore.pushright(w)
                w.seen = True
```


Breadth First Search

The key idea for all of these algorithms is that we keep track of an expanding ring called the frontier. On a grid, this process is sometimes called "flood fill", but the same technique works for non-grids. Start the animation to see how the frontier expands:

SECTION 5.3
 Dijkstra's algorithm

In a graph where the edges have costs (e.g. travel time), we can find shortest paths by using a similar "grow the frontier" algorithm to bfs.
def dijkstra(g, s):
for v in g.vertices:
v.distance $=\infty$
s.distance $=0$
toexplore $=$ PriorityQueue([s], sortkey $=\lambda v$: v.distance)
while not toexplore.is_empty():
v = toexplore. popmin()
\# Assert: v.distance is distance(s to v)
\# Assert: v is never put back into toexplore
for (w,edgecost) in v.neighbours:
dist_w = v.distance + edgecost

w.distance $=$ dist_w
if w in toexplore:
toexplore.decreasekey (w)
else:
toexplore.push(w)
d. distance $=7$ a. disfance $=8$
c. distana $=3+1=4$
d.distance $=6$ I'relaxed" the $\leftrightarrow \rightarrow$ edge.

Movement costs

So far we've made steps have the same "cost". In some pathfinding scenarios there are different costs for different types of movement. We'd like the pathfinder to take these costs into account. Let's compare the number of steps from the start with the distance from the start:

$$
\leftarrow \text { Start animation } \rightarrow
$$

```
def dijkstra(g, s):
    for v in g.vertices:
        v.distance = \infty
    s.distance = 0
    toexplore = PriorityQueue([s], sortkey = \lambdav: v.distance)
    while not toexplore.is_empty():
        v = toexplore.popmin()
        # Assert: v.distance is distance(s to v)
            * Assert: v is never put back into toexplore
                for (w,edgecost) in v.neighbours:
                        dist_w = v.distance + edgecost
            if dist_w < w.distance:
                w.distance = dist_w
                    if w in toexplore:
                        toexplore.decreasekey(w)
                    else:
                        toexplore.push(w)
```

$$
\text { Toral }=O(V)+O(V) \times C_{p q p m i n}+O(E) \times C_{p u s h / p e c . k e y}
$$

$$
=O(E+V \log V)
$$

Right from the beginning, and all through the course, we stress that the programmer's task is not just to write down a program, but that his main task is to give a formal proof that the program he proposes meets the equally formal functional specification.

Edsger Dijkstra (1930—2002)
On the cruelty of really teaching computer science, 1988

Problem statement

Given a directed graph in which each edge is labelled with a cost ≥ 0, and a start vertex s, compute the distance from s to every other vertex, where ... $\operatorname{cost}(u \rightarrow v)$ is the cost associated with edge $u \rightarrow v$
$\operatorname{cost}(u \rightarrow \cdots \rightarrow v)$ is the sum of edge costs along the path $u \rightarrow \cdots \rightarrow v$
distance $(u$ to $v)= \begin{cases}\min \text { cost of any path } u \rightarrow \cdots \rightarrow v, \text { if one exists } \\ 0, & \text { if } u=v \\ \infty, & \text { otherwise }\end{cases}$
i. On a finite graph, the algorithm terminates
ii. When it does, for every vertex v,
iii. The two assertions never fail

```
def dijkstra(g, s):
    for v in g.vertices:
        v.distance = \infty
    s.distance = 0
    toexplore = PriorityQueue([s], sortkey = \lambdav: v.distance)
    while not toexplore.is_empty():
        v = toexplore.popmin()
        # Assert: v.distance = distance(s to v)
        # Assert: v is never put back into toexplore
        for (w,edgecost) in v.neighbours:
            dist_w = v.distance + edgecost
            if dist_w < w.distance:
            w.distance = dist_w
            if w in toexplore:
                            toexplore.decreasekey(w)
                    else:
                    toexplore.push(w)
```

Theorem.
i. On a finite graph, the algorithm terminates
ii. When it does, for every vertex $v, \quad v$. distance $=\operatorname{distance}(s$ to $v)$
iii. The two assertions never fail ie., just after v is popped,
(9) v.distance $=\operatorname{distance}(s$ to $v)$ and (10) v is never put back into toexplore

Proof of (i)
vertices can never be put buck into $P . Q$. (by Ass. 10)
And V is finite (by assumption)
\therefore terminates
Proem of (ii)
By Ass. 9, \quad r.distance $=\operatorname{dist}\left(\begin{array}{l}S \\ \text { to } \\ \end{array}\right)$ just after v is popped.
RTP : - V.distance doesn't change subsequently

- every vertex reachable from is eventually popped. (and verries not reachable never have distance set.)

$$
E \times E R C I S E .
$$

Assertion (line 9).
Just after a vertex v is popped, v. distance $=\operatorname{distance}(s$ to $v)$
CLAIM: this assertion never fails.
PRoof: suppose it fails at some point in execution. Let v be the vertex for which it first fails. let T be the instant marks object it first fails.
consider a sharhest part from s to v :

CASEI: There is some vertex on this porth that hasnit been popped by time $\leq T$.
let i be the index of the first such vertex; the park is

Then, we obtain a contradiction [see rext two slicles]

CASE 2: all vertices on this part have been popped by time $\leq T$.

By a similar argument, this leads to 汶.

So ours initial supposition (that the assertion fails at some point in execution) is false.
maths object
$\operatorname{dist}(s$ to $r)$
$<V$. distance
LLEMMA: If the alg, sets w. distance $=x$ for some vertex w, then \exists path from s to w of $\cos t x$. PROOF: by easy induction.
Thus, $\operatorname{dist}(s$ to $r) \triangleq \min \operatorname{cost}(p a r h p) \leqslant v$. distance by the comer.
But were supposing that the assertion failed, $\dot{i} \quad v$ distance $\neq \operatorname{dist}(s$ to $r)$.
So the inequality is strict: $\operatorname{dist}(s$ to $v)<v . d i s t a n c e$.
$\underline{m}^{n} u_{i}$. distance (were using a priority queue ($P Q$) we just popped r.
\because Also. u_{i} was in the $P Q \quad\left(u_{i-1}\right.$ ensured it's in there, and by choice of i ir hascir been $\begin{array}{c}\text { popped } y c t)\end{array}$
Thus, by definition of $P Q$, v.distance $\leq u_{i}$. distance,
$\leq u_{i-1} \cdot \operatorname{distance}+\operatorname{cost}\left(u_{i-1} \rightarrow u_{i}\right)$
\because when we popped u_{i-1}, we relaxed all irs edges including $u_{i-1} \rightarrow u_{i}$. is we forced u_{i}. distance $\leq u_{c-1}$. distance $+\operatorname{cost}\left(u_{i-1} \rightarrow u_{i}\right)$.
let's check: is this inequality soil true at time T ?

- For any rerbex w, the all. can only ever decrease widistance, ir cant increase ir.
- The RHS cant have changed since u_{i-1} way popped, because u_{i-1}-distance was correct when we popped ir (by induction hypothesis, ie the hypothesis that Assertion 9 didur fail before T) and it cant decrean ans further.
- The LHS might have decreased in the interim. So this inequalhy remains true at rime r.

PRECEDING SLIDE:
$\operatorname{dist}(S$ to $v)<V$. distance $\leq u_{i}$. distance $\leq u_{i-1}$. distance $+\operatorname{cogt}\left(u_{i-1} \rightarrow u_{i}\right)$
continuing.

$$
u_{i-1} \cdot \operatorname{distance}+\operatorname{cost}\left(u_{i-1} \rightarrow u_{i}\right)
$$

$=\operatorname{dist}\left(s\right.$ to $\left.u_{i-1}\right)+\operatorname{cost}\left(a_{i-1} \rightarrow u_{i}\right) \quad\left\{\begin{array}{l}\text { by induction hyp pothesis - } \\ \text { ie we're assuming Assertion a first failed for } v, \\ \text { so ir didict foil }\end{array}\right.$ so ir didn't fail for u_{i-1}. so $u_{i=1}$.distance was correct when u_{i-1} was popped; and as noted above it cont change thereafter
$\dot{\operatorname{dist}}\left(s\right.$ to r) (we chose this park $\ddot{u}_{1}^{s} \rightarrow \cdots \rightarrow \ddot{u}_{1}^{\prime \prime}$ to be a shortest park from s to v. Twi

$$
\operatorname{dist}(\text { s to } v)=\operatorname{cost}(\text { this path }) \geqslant \operatorname{cost}\left(u_{1} \rightarrow \cdots \rightarrow u_{i-1}\right)+\operatorname{cost}\left(u_{i-1}+u_{i}\right)
$$

[by definition of park cost, and the fact that costs are $\geqslant 0$.
Also, by definition of distance, as "min cost over all paths".

$$
\operatorname{cost}\left(u_{1} \rightarrow \cdots \rightarrow u_{i-1}\right) \geqslant \operatorname{dist}\left(\text { s to } u_{i-1}\right) .
$$

Putting these inequalines together, $\quad \operatorname{dist}\left(\begin{array}{l}\text { s to } r\end{array}\right) \geqslant \operatorname{dist}\left(s\right.$ to $\left.u_{i-1}\right)+\operatorname{cost}\left(u_{i-1} \rightarrow u_{i}\right)$.
In summary,

$$
\operatorname{dist}(s \text { to } r)<v . \operatorname{disiance} \leq \ldots \ldots \leq \operatorname{dist}(s \text { to } r) \text {. }
$$

But ir') impossible to have $\operatorname{dist}(s$ fo $v)<\operatorname{dist}(s$ to $v)$ - a contradiction.

Assertion (line 10).
A vertex v, once popped, is never put back into the priority queue

```
v = toexplore.popmin()
# Assert: v.distance is distance(s to v)
# Assert: v is never put back into toexplore
for (w,edgecost) in v.neighbours:
    dist_w = v.distance + edgecost
    if dist_w < w.distance:
        w.distance = dist_w
        if w in toexplore:
            toexplore.decreasekey(w)
        else:
            toexplore.push(w)
```

Not covered in the lecture -
but pretty easy to prove, now that we've sen the proof of Ass. line o

PROOF

1. The condition on line 13 ensures that a vertex w is only pushed into the priority queue when we discover a path shorter than w. distance
2. Once v is popped, v. distance $=\operatorname{distance}(s$ to v) (by the assertion on line 9), so there can be no shorter path, by definition of "distance".

Hence v is never pushed back.

