
Graphs and path finding

ALGORITHMS 2

SECTION 5

directed graphs undirected graphs

K O N I G S B E R G A

“Can I go for a stroll around the city on a route that crosses each bridge exactly once?”

A

B

C

D

“Can I go for a stroll around the city on a route that crosses each bridge exactly once?”

A

B

C

D

g = {A: [B,B,D],
 B: [A,A,C,C,D],
 C: [B,B,D],
 D: [A,B,C]}

“Is there a path in which every edge appears exactly once?”

How should this game agent navigate
to the jetty?

PATH-FINDING ALGORITHMS

1. Draw polygon boundaries around obstacles
2. Divide free space into convex polygons
3. Create a graph, with edges between adjacent polygons
4. Find a path on the graph
5. Draw this path in 2D coordinates on the map

(easy, since we’ve used convex polygons)

https://stackoverflow.blog/2021/12/31/700000-lines-of-code-20-years-and-one-developer-how-dwarf-fortress-is-built/

D
w
a
r
f

F
o
r
t
r
e
s
s

How can we do path-finding at scale?

FR
IEN

D
FR

IEN
D

Alice was at the Golden Gate Bridge with Bob

 Cathy: Wish we were there! David likes this

Alice Golden Gate Bridge Bob

Cathy David

id: 105, otype: USER
name: Alice

id: 244, otype: USER
name: Bob

id: 379, otype: USER
name: Cathy

id: 471, otype: USER
name: David

FR
IEN

D
FR

IEN
D

FR
IEN

D
FR

IEN
D

FR
IEN

D
FR

IEN
D

id: 534, otype: LOCATION
name: Golden Gate Bridge
loc: 37.49N, 122.28W

id: 632, otype: CHECKIN

id: 771, otype: COMMENT
text: Wish we were there!

C
H

EC
K

IN
LO

C

TAGGED_AT
TAGGED

LIKES
LIKED_BY

o
typ

e: C
O

M
M

N
ET

tim
e: 1

3
3

4
5

1
1

6
7

0

Q. Why did Facebook choose to make
CHECKIN a vertex, rather than a
USER→LOCATION edge?

❖ How fast will an epidemic of
misinformation spread?

❖ At whom should I target my
advertising?

Graph notation
A graph consists of a set of vertices 𝑉, and a set of edges 𝐸.

directed graphs undirected graphs

𝑣1 → 𝑣2 is how we write
the edge from 𝑣1 to 𝑣2

𝑣1 𝑣2 is how we write
the edge between 𝑣1 and 𝑣2

page 4

▪ A directed acyclic
graph (DAG) is a
directed graph
without any cycles

▪ A forest is an undirected acyclic graph
▪ A tree is a connected forest
▪ (An undirected graph is connected if for every pair of

vertices there is a path between them)

Which of these two
graphs is a tree,
which a forest?

page 4

▪ A directed acyclic
graph (DAG) is a
directed graph
without any cycles

▪ A forest is an undirected acyclic graph
▪ A tree is a connected forest
▪ (An undirected graph is connected if for every pair of

vertices there is a path between them)

What’s wrong with
my definitions for
path and cycle?

1 2

3
4

5

{1: [2,5],
 2: [1,5,4,3],
 3: [2,4],
 4: [3,2,5],
 5: [1,2,4]
 }

Array of adjacency lists

Adjacency matrix

np.array([[0,1,0,0,1],
 [1,0,1,1,1],
 [0,1,0,1,0],
 [0,1,1,0,1],
 [1,1,0,1,0]])

How we can store graphs, in computer code page 4

Mini-exercise

▪ What is the largest possible number of
edges in an undirected graph with 𝑉
vertices?

▪ and in a directed graph?

▪ What’s the smallest possible number of
edges in a tree with 𝑉 vertices?

page 4

▪ Clever graph algorithms

▪ Performance analysis

▪ Proving correctness

▪ What we can model with graphs

The next eight lectures

what was printed out earlier:
2021 notes

what’s online, and will be
ready to collect on
Friday:
2024 notes

SECTION 5.2

Depth-first search

start vertex 𝑠

PROBLEM STATEMENT. Given a start vertex 𝑠,
and given the 𝑣 ↦ neighbours(𝑣) function,
list all the vertices of the graph.

How might we
navigate a
labyrinth?

A

B C D

E F G H

1 def visit(v):
 2 print("visiting", v)
 3 for w in v.neighbours:
 4 visit(w)
 5

 6 visit(A)

visiting A
visiting B
visiting A
visiting B
...
RecursionError:
maximum recursion depth exceeded

page 6

A

B C D

E F G H

1 def visit_tree(v, v_parent):
 2 print("visiting", v, "from", v_parent)
 3 for w in v.neighbours:
 4 if w != v_parent:
 6 visit_tree(w, v)
 7
 8 visit_tree(D, None)

visiting D from None
visiting C from D
visiting A from C
visiting D from A
...
RecursionError:
maximum recursion depth exceeded

A

B C D

E F G H

1 # visit all vertices reachable from s

 2 def dfs_recurse(g, s):
 3 for v in g.vertices:
 4 v.visited = False
 5 visit(s)
 6
 7 def visit(v):
 8 v.visited = True
 9 for w in v.neighbours:
10 if not w.visited:
11 visit(w)

dfs_recurse(g, D):
| visit(D):
| | neighbours = [H, C, A]
| | visit(H):
| | | neighbours = [D]
| | | don’t visit D
| | | return from visit(H)
| | visit(C)
| | | neighbours = [D, A]
| | | don’t visit D
| | | visit(A):
| | | | ...

page 6

1 # visit all vertices reachable from s

 2 def dfs_recurse(g, s):
 3 for v in g.vertices:
 4 v.visited = False
 5 visit(s)
 6
 7 def visit(v):
 8 v.visited = True
 9 for w in v.neighbours:
10 if not w.visited:
11 visit(w)

Ariadne’s thread

1 # visit all vertices reachable from s

 2 def dfs_recurse(g, s):
 3 for v in g.vertices:
 4 v.visited = False
 5 visit(s)
 6
 7 def visit(v):
 8 v.visited = True
 9 for w in v.neighbours:
10 if not w.visited:
11 visit(w)

Theseus in the labyrinth of the Minotaur

Ariadne gave Theseus a ball of thread. She told him
to tie one end at the entrance of the labyrinth, and
to unroll the ball as he delved the branching paths.
And to mark with chalk those passages he explored.
After Theseus slew the Minotaur, he could follow
the thread back to the entrance, where Ariadne was
waiting.

but why not just teleport?

A

B C D

E F G H

1 # visit all vertices reachable from s

 2 def dfs(g, s):
 3 for v in g.vertices:
 4 v.seen = False
 5 toexplore = Stack([s])
 6 s.seen = True
 7

 8 while not toexplore.is_empty():
 9 v = toexplore.popright()
10 for w in v.neighbours:
11 if not w.seen:
12 toexplore.pushright(w)
13 w.seen = True

page 7

𝑠

1 # visit all vertices reachable from s

 2 def dfs(g, s):
 3 for v in g.vertices:
 4 v.seen = False
 5 toexplore = Stack([s])
 6 s.seen = True
 7

 8 while not toexplore.is_empty():
 9 v = toexplore.popright()
10 for w in v.neighbours:
11 if not w.seen:
12 toexplore.pushright(w)
13 w.seen = True

Analysis of running time
for stack-based dfs

page 7

1 # visit all vertices reachable from s

 2 def dfs_recurse(g, s):
 3 for v in g.vertices:
 4 v.visited = False
 5 visit(s)
 6
 7 def visit(v):
 8 v.visited = True
 9 for w in v.neighbours:
10 if not w.visited:
11 visit(w)

Analysis of running time
for recursive dfs

page 6

SECTION 5.2

Breadth-first search /
finding shortest path

A

B

C

D

E

distance from A = 0

distance from A = 1

distance from A = 2

A

B

C

D

E

page 9PROBLEM STATEMENT. Given a start vertex 𝑠, and
an end vertex 𝑡, find the shortest path from 𝑠 to 𝑡.

𝑠

𝑡

1 # Visit all the vertices in g reachable from start vertex s
 2 def bfs(g, s):
 3 for v in g.vertices:
 4 v.seen = False
 5 toexplore = Queue([s])
 6 s.seen = True
 7

 8 while not toexplore.is_empty():
 9 v = toexplore.popleft()
10 for w in v.neighbours:
11 if not w.seen:
12 toexplore.pushright(w)
13 w.seen = True

page 9

1 # visit all vertices reachable from s

 2 def dfs(g, s):
 3 for v in g.vertices:
 4 v.seen = False
 5 toexplore = Stack([s])
 6 s.seen = True
 7

 8 while not toexplore.is_empty():
 9 v = toexplore.popright()
10 for w in v.neighbours:
11 if not w.seen:
12 toexplore.pushright(w)
13 w.seen = True

A

B D

CE

1 # Find a path from s to t, if one exists
 2 def bfs_path(g, s, t):
 3 for v in g.vertices:
 4 (v.seen, v.come_from) = (False, None)
...

10 while not toexplore.is_empty():
11 v = toexplore.popleft()
12 for w in v.neighbours:
13 if not w.seen:
14 toexplore.pushright(w)
15 (w.seen, w.come_from) = (True, v)
...

19 if t.come_from has not been set:
20 there is no path from s to t
21 else:
22 reconstruct the path from s to t,
23 working backwards

page 10

Q. How might we find a
shortest path from A to C?

EXERCISE: Read the notes / watch the video for
section 5.4, to familiarize yourself with Dijkstra’s
algorithm.

We will spend Friday’s lecture going through the
proof of correctness.

	Slide 1: Graphs and path finding
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8: PATH-FINDING ALGORITHMS
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17: The next eight lectures
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35

