ALGORITHMS 2 SECTION 5

Graphs and path finding
directed graphs

A directed graph is an ordered pair $g=(V, E)$ where V is a set ("vertices") and E is a relation on V ("edges").
undirected graphs
 relation is syumuetvic.

Konigsberga

"Can I go for a stroll around the city on a route that crosses each bridge exactly once?"

"Can I go for a stroll around the city on a route that crosses each bridge exactly once?"

"Is there a path in which every edge appears exactly once?"

$$
\begin{aligned}
g=\{A: & {[B, B, D], } \\
B & {[A, A, C, C, D], } \\
& C:[B, B, D], \\
& D:[A, B, C]\}
\end{aligned}
$$

PATH-FINDING ALGORITHMS

How should this game agent navigate to the jetty?

1. Draw polygon boundaries around obstacles
2. Divide free space into convex polygons
3. Create a graph, with edges between adjacent polygons
4. Find a path on the graph
5. Draw this path in 2D coordinates on the map (easy, since we've used convex polygons)

How can we do path-finding at scale?

https://stackoverflow.blog/2021/12/31/700000-lines-of-code-20-years-and-one-developer-how-dwarf-fortress-is-built/

Cambridge Game Jam 2024
Build a Game in 48 Hours at Uni Of Cam!
9th - 11th February

```
Sign Up! Join our Discord!
```

| 2 | 21 | 96 |
| :--- | :--- | :--- | ---: |
| Days | Hours Mins Secs | |
| Until Game Jam! | | |

In collaboration with:

$(=11=)$

CUCaTS

Q. Why did Facebook choose to make CHECKIN a vertex, rather than a USER \rightarrow LOCATION edge?
\& How fast will an epidemic of misinformation spread?
\& At whom should I target my advertising?

Graph notation

A graph consists of a set of vertices V, and a set of edges E.
directed graphs

$v_{1} \rightarrow v_{2}$ is how we write the edge from v_{1} to v_{2}
undirected graphs

$v_{1} \leftrightarrow v_{2}$ is how we write the edge between v_{1} and v_{2}

Which of these two graphs is a tree, which a forest?

- A directed acyclic graph (DAG) is a directed graph without any cycles
- A forest is an undirected acyclic graph
- A tree is a connected forest
- (An undirected graph is connected if for every pair of vertices there is a path between them)

What's wrong with my definitions for path and cycle?

- A directed acyclic graph (DAG) is a directed graph without any cycles
- A forest is an undirected acyclic graph
- A tree is a connected forest
- (An undirected graph is connected if for every pair of vertices there is a path between them)

Array of adjacency lists

Adjacency matrix
$\left.\begin{array}{l}1 \\ 2 \\ 3 \\ 4 \\ 0\end{array} \begin{array}{lllll}1 & 2 & 3 & 4 & 5 \\ 0 & 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 0 & 1 \\ 1 & 1 & 0 & 1 & 0\end{array}\right]$

Memory: $O(V+\varepsilon)$
\{1: $[2,5]$, Note: when we urine this
2: $[1,5,4,3]$, we really mean $O(|V|+|E|)$,
3: $[2,4]$, Since V and E ave sets.
4: $[3,2,5]$,
5: $[1,2,4]$
\}

Note: I'll gloss over for now	For now, just read this
ore technical difficulty of	we need IVI space
os mining big-o notation	or the vertex list, and
with two variables. well	VEl space in total for all
come back to ir later.	the edge lists.

$$
\begin{array}{rll}
\text { np. array } & {[[0,1,0,0,1],} & \\
& {[1,0,1,1,1],} & \text { Memory: } \\
& {[0,1,0,1,0],} & \text { o(} \left.V^{2}\right) \\
& {[0,1,1,0,1],} &
\end{array}
$$

- What is the largest possible number of edges in an undirected graph with V vertices?
- and in a directed graph?
- What's the smallest possible number of
 edges in a tree with V vertices?

The next eight lectures

- Clever graph algorithms
- Performance analysis
- Proving correctness
- What we can model with graphs

Contents

5 Graphs and path finding
5.1 Notation and represent
5.2 Depth-first search
5.3 Breadth-first search
5.4 Dijkstra's algorithm
5.5 Algorithms and proofs
5.6 Bellman-Ford
5.7 Dynamic programming
5.8 Johnson's algorithm

6 Graphs and subgraphs
6.1 Flow networks
6.2 Ford-Fulkerson algorith
6.3 Max-flow min-cut theor
6.4 Matchings
6.5 Prim's algorithm
6.6 Kruskal's algorithm
6.7 Topological sort

7 Advanced data structure
7.1 Aggregate analysis
7.2 Amortized costs: introd
7.3 Amortized costs: defini
7.4 Potential functions
7.5 Three priority queues
7.6 Fibonacci heap
7.7 Implementing the Fibo
7.8 Analysis of Fibonacci h
7.9 Disjoint sets

IA Algorithms 2

Damon Wischik, Computer Laboratory, Cambridge University. Lent Term 2024

Contents

5 Graphs and path finding 1
5.1 Notation and representation . 4
5.2 Depth-first search . 6
5.3 Breadth-first search . 9
5.4 Dijkstra's algorithm . 12
5.5 Algorithms and proofs . 16
5.6 Bellman-Ford . 21

5.8 Johnson's algorithm . 27

6 Graphs and subgraphs 29
6.1 Flow networks . 30
6.2 Ford-Fulkerson algorithm . 32
6.3 Max-flow min-cut theorem . 37
6.4 Matchings . 40
6.5 Prim's algorithm . 42
6.6 Kruskal's algorithm . 45
6.7 Topological sort . 47

7 Advanced data structures 51
7.1 Aggregate analysis . 51
7.2 Amortized costs: introduction . 53
7.3 Amortized costs: definition . 55
7.4 Potential functions . 57
7.5 Three priority queues . 62
7.6 Fibonacci heap . 65
7.7 Implementing the Fibonacci heap* . 69
7.8 Analysis of Fibonacci heap . 73
7.9 Disjoint sets . 75
what's online, and will be ready to collect on Friday: 2024 notes

SECTION 5.2
Depth-first search

PROBLEM STATEMENT. Given a start vertex s, and given the $v \mapsto$ neighbours (v) function, list all the vertices of the graph.

How might we navigate a
labyrinth?


```
def visit_tree(v, v_parent):
    print("visiting", v, "from", v_parent)
    for w in v.neighbours:
        if w != v_parent:
            visit_tree(w, v)
visit_tree(D, None)
visiting D from None
visiting C from D
visiting A from C
visiting D from A
RecursionError:
maximum recursion depth exceeded
```



```
# visit all vertices reachable from s
def dfs_recurse(g, s):
    for v in g Frtices: visited }=\operatorname{set}(
            v/lsited = False
    visit(s)
def visit(v):
    v.visited True visined.add (V)
    for w in v.neighbours:
        if not w.visited: v not in visifol
                visit(w)
```

This algorithm needs so beep track of which verhies ir's seen. It'd be cleaner to store this as a set but we havenit yet dove performance analysis of set operations. so in tine this code snippet I'm using a per-verren attribune instead.

```
# visit all vertices reachable from s
def dfs_recurse(g, s):
    for v in g.vertices:
    v.visited = False
    visit(s)
def visit(v):
    v.visited = True
    for w in v.neighbours:
        if not w.visited:
            visit(w)
```


Theseus in the labyrinth of the Minotaur

Ariadne gave Theseus a ball of thread. She told him to tie one end at the entrance of the labyrinth, and to unroll the ball as he delved the branching paths. And to mark with chalk those passages he explored. After Theseus slew the Minotaur, he could follow the thread back to the entrance, where Ariadne was waiting.

```
# visit all vertices reachable from s
def dfs_recurse(g, s):
    for v in g.vertices:
        v.visited = False
    visit(s)
def visit(v):
    v.visited = True
    for w in v.neighbours:
        if not w.visited:
            visit(w)
```


Ariadne's thread

$$
5
$$


```
# visit all vertices reachable from s
def dfs(g, s):
    for v in g.vertices:
            v.seen = False
        toexplore = Stack([s])
        s.seen = True
        while not toexplore.is_empty():
            v = toexplore.popright()
            for w in v.neighbours:
                    if not w.seen:
                toexplore.pushright(w)
                w.seen = True
```

Analysis of running time for stack-based dis

```
# visit all vertices reachable from s
def dfs(g, s):
    for v in g.vertices: 
    loexplore = Stack([s]) ] O(1)
    while not toexplore.is_empty():] O(V) since we never visis a vertex mere rhan once
        v = toexplore.popright()
        for w in v.neighbours:
            if not w.seen:
                toexplore.pushright(w)
            O(E) since it losiss at every edge from every vertex.
```

So total cost $O(V+t)$.

Analysis of running time for recursive dis

```
# visit all vertices reachable from s
def dfs_recurse(g, s):
    for v in g.vertices:
        v.visited = False
    visit(s)
def visit(v):
    v.visited = True
    for w in v.neighbours:
        if not w.visited:
            visit(w)
```

Cost: $O(V+\bar{E})$ for she same reason.

SECTION 5.2
Breadth-first search /
finding shortest path

PROBLEM STATEMENT. Given a start vertex s, and an end vertex t, find the shortest path from s to t.


```
# Visit all the vertices in g reachable from start vertex s
def bfs(g, s):
    for v in g.vertices:
        v.seen = False
    toexplore = Queue([s])
    s.seen = True
    while not toexplore.is_empty():
        v = toexplore.popleft()
        for w in v.neighbours:
            if not w.seen:
                toexplore.pushright(w)
                w.seen = True
            cost: O(V+E)
same reayoning or for dfs.
```

```
# Find a path from s to t, if one exists
def bfs_path(g, s, t):
    for v in g.vertices:
    (v.seen, v.come_from) = (False, None)
    while not toexplore.is_empty():
        v = toexplore.popleft()
        for w in v.neighbours:
            if not w.seen:
                toexplore.pushright(w)
                (w.seen, w.come_from) = (True, v)
    if t.come_from has not been set:
        there is no path from s to t
    else:
        reconstruct the path from s to t,
        working backwards
```


Q. How might we find a shortest path from A to C ?

3. Algorithm design

Lecture 05	3.1 Dynamic programming
[slides]	
Lecture 06	Dynamic programming examples
[slides]	
Lecture 07	3.2 Greedy algorithms
[slides]	

First half of example sheet 2 [pdf]
Optional tick: huffman
Tick 2, due 19 Feb (TBC)

4. Data structures (intro)

Lecture 08 4.1 Memory and pointers
[slides.pre] 4.1-4.2 List, tree, stack, queue, dictionary
4.7 Hash tables
4.9 Priority queues

Rest of example sheet 2 [pdf]
5. Graphs and path finding

Lecture 09 5, 5.1 Graphs $\square^{\top}(14: 27)$
[slides.pre] 5.2 Depth-first search \mathbb{Z} (11:37)
5.3 Breadth-first search $\mathbb{E}^{7}(6: 43)$

Lecture 10 5.4 Dikstra's algorithm $L^{\top}(15: 25)$ plus proof $\mathbb{L}^{\top}(24: 01)$
Lecture 11 5.5 Algorithms and proofs © (9:29)
5.6 Bellman-Ford $\mathbb{} \backslash$ (12:13)

Lecture 12 5.7 Dynamic programming $\mathbb{Z}(13: 06)$
5.8 Johnson's algorithm [$\begin{aligned} & \text { (13:43) }\end{aligned}$

Example sheet 4 [pdf]
Optional tick: bfs-all from ex4.q6

6. Graphs and subgraphs

Lecture $13 \quad 6.1$ Flow networks ${ }^{\top}(9: 31)$
6.2 Ford-Fulkerson algorithm $\mathbb{L}^{\top}(21: 55)$

Lecture 14 6.3 Max-flow min-cut theorem $\mathbb{L}^{\top}(19: 38)$
Lecture 15 6.4 Matchings ${ }^{\top}$ (11:01)

Example sheet 4

$$
\leftarrow
$$

Question 6. Modify b website, for you to chec

Algorithms tick: bfs-all Find All Shortest Paths

Breadth-first search can be used to find a shortest path between a pair of vertices. Modify the standard bfs_path algorithm so that it returns all shortest paths.

Please submit a source file bfs_all.py on Moodle. It should implement a function

```
shortest_paths(g, s, t)
# Find all shortest paths from s to t
# Return a list of paths, each path a list of vertices starting with s and
```

The graph g is stored as an adjacency dictionary, for example $\mathrm{g}=\{0:\{1,2\}, 1:\{ \}$, $2:\{1,0\}\}$. It has a key for every vertex, and the corresponding value is the set of that vertex's neighbours.

EXERCISE: Read the notes / watch the video for section 5.4, to familiarize yourself with Dijkstra's algorithm.

We will spend Friday's lecture going through the proof of correctness.

