
How (not) to compute the Fibonacci numbers
𝐹0 = 𝐹1 = 1
𝐹𝑛 = 𝐹𝑛−2 + 𝐹𝑛−1 for 𝑛 ≥ 2

def f(n):
 return 1 if n<2 else f(n-2) + f(n-1)

QUESTION
Why is this a daft implementation?

Tree of function calls Dependency graph

How (not) to compute the Fibonacci numbers
𝐹0 = 𝐹1 = 1
𝐹𝑛 = 𝐹𝑛−2 + 𝐹𝑛−1 for 𝑛 ≥ 2

Dependency graph

def f(n):
 x = np.ones(n+1)
 for i in range(2,n+1):
 x[i] = x[i-2] + x[i-1]
 return x[n]

cache = {}
def f(n):
 if n in cache:
 return cache[n]
 else:
 res = 1 if n<2 else f(n-2)+f(n-1)
 cache[n] = res
 return res

def f(n):
 x,y = 1,1
 for _ in range(2,n+1):
 x,y = y, x+y
 return y

We can get Θ(𝑛) running time by leveraging
duplication in the dependency graph.

3.1 Practical dynamic programming

In many interesting problems, there is substantial overlap in the subproblems,
permitting polynomial-time solution, using ...

▪ top-down memo-ization
Simply implement the recursion, and cache the results

▪ or bottom-up iteration
Start from the leaves and work up
(but we first need to figure out the dependency graph)

The naive recursive solution to the Bellman
equation is often impractical, since the
computation tree typically grows exponentially
with the size of the problem.

Example: rod cutting
A DIY supplier has a steel rod of length 𝑛 ∈ ℕ, and a machine that can cut it into smaller pieces.
Different lengths can be sold for different prices; a piece of length ℓ ∈ ℕ fetches 𝑝ℓ.

How should it be cut, to maximize profit?

Bellman equation: Let 𝑣(𝑛) be the maximum profit achievable from a rod of length 𝑛. Then

𝑣 𝑛 = ൝
0 if 𝑛 = 0

max
1≤𝑖≤𝑛

𝑝𝑖 + 𝑣(𝑛 − 𝑖) if 𝑛 > 0

Example 3.1.1 Matrix chain multiplication
The cost of multiplying two matrices depends on their dimensions:

ℓ × 𝑚
𝑚 × 𝑛

ℓ × 𝑛

ℓ𝑚𝑛 multiplications + ℓ 𝑚 − 1 𝑛 additions
Let’s take the total cost to be ℓ𝑚𝑛.

If we want to compute the product of several matrices, we have a choice about the order of
multiplication (because matrix multiplication is associative). For example,

𝐴𝐵𝐶𝐷𝐸 = 𝐴𝐵 𝐶𝐷 𝐸 = 𝐴 𝐵 𝐶𝐷 𝐸

Find the least-cost way to compute the product 𝐴0 ⋅ 𝐴1 ⋅ ⋯ ⋅ 𝐴𝑛−1
𝑑0 × 𝑑1 𝑑1 × 𝑑2 𝑑𝑛−1 × 𝑑𝑛

Bellman equation: Let 𝑣(𝑖, 𝑗) be the minimum cost for multiplying 𝐴𝑖𝐴𝑖+1 ⋯ 𝐴𝑗−1, for 𝑖 < 𝑗. Then

𝑣 𝑖, 𝑗 = ቐ
0 if 𝑗 = 𝑖 + 1

min
𝑖<𝑘<𝑗

𝑑𝑖𝑑𝑘𝑑𝑗 + 𝑣 𝑖, 𝑘 + 𝑣(𝑘, 𝑗) if 𝑗 > 𝑖 + 1

Bellman equation: Let 𝑣(𝑖, 𝑗) be the minimum cost for multiplying 𝐴𝑖𝐴𝑖+1 ⋯ 𝐴𝑗−1, for 𝑖 < 𝑗. Then

𝑣 𝑖, 𝑗 = ቐ
0 if 𝑗 = 𝑖 + 1

min
𝑖<𝑘<𝑗

𝑑𝑖𝑑𝑘𝑑𝑗 + 𝑣 𝑖, 𝑘 + 𝑣(𝑘, 𝑗) if 𝑗 > 𝑖 + 1

Example 3.1.2 Longest common subsequence
A subsequence of a string 𝑠 is any string obtained by dropping zero or more characters from 𝑠.
Given two strings 𝑠 and 𝑡, what’s the longest subsequence they have in common?

T H E B A R B I E M O V I E

O P P E N H E I M E R
i

j

Bellman equation: Let 𝑣𝑖,𝑗 be the length of the LCS between s[0:i] and t[0:j]. Then

Let’s frame the task as
choosing a sequence
from these actions:

𝒾 decrement i

𝒿 decrement j

𝓂 match a character and
decrement i & j

𝑣𝑖,𝑗 = ൞

0 if 𝑖 = 0 or 𝑗 = 0

𝑣𝑖−1,𝑗 ∨ 𝑣𝑖,𝑗−1 ∨ 1 + 𝑣𝑖−1,𝑗−1 if 𝑖 > 0 and 𝑗 > 0 and s[i−1]=t[j−1]

𝑣𝑖−1,𝑗 ∨ 𝑣𝑖,𝑗−1 if 𝑖 > 0 and 𝑗 > 0 and s[i−1] ≠ t[j−1]

Bellman equation: Let 𝑣𝑖,𝑗 be the length of the LCS between s[0:i] and t[0:j]. Then

𝑣𝑖,𝑗 = ൞

0 if 𝑖 = 0 or 𝑗 = 0

𝑣𝑖−1,𝑗 ∨ 𝑣𝑖,𝑗−1 ∨ 1 + 𝑣𝑖−1,𝑗−1 if 𝑖 > 0 and 𝑗 > 0 and s[i−1]=t[j−1]

𝑣𝑖−1,𝑗 ∨ 𝑣𝑖,𝑗−1 if 𝑖 > 0 and 𝑗 > 0 and s[i−1] ≠ t[j−1]

How to extract the programme

𝑣(5)

𝑣(4)

𝑣(3)

𝑣(2)
𝑣(1)

𝑣(0)

When we compute the maximum

𝑣 𝑥 = max
𝑎

reward𝑥,𝑎 + 𝑣(next𝑥,𝑎)

let’s also store which 𝑎 achieved the maximum.

To find an optimal path, just start at the top and
repeatedly pick the best action.

This works whether we’re computing the values
bottom-up, or top-down with memo-ization.

QUESTION
What would you do if there are
two equally-good actions?

Example 3.1.2 Longest common subsequence

L O G A R I T H M

0 0 0 0 0 0 0 0 0 0
A

0 0 0 0 1 1 1 1 1 1
L

0 1 1 1 1 1 1 1 1 1
G

0 1 1 2 2 2 2 2 2 2
O

0 1 2 2 2 2 2 2 2 2
R

0 1 2 2 2 3 3 3 3 3
I

0 1 2 2 2 3 4 4 4 4
T

0 1 2 2 2 3 4 5 5 5
H

0 1 2 2 2 3 4 5 6 6
M

0 1 2 2 2 3 4 5 6 7

0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 1 1 1 1 1

0 1 1 1 1 1 1 1 1 1

0 1 1 2 2 2 2 2 2 2

0 1 2 2 2 2 2 2 2 2

0 1 2 2 2 3 3 3 3 3

0 1 2 2 2 3 4 4 4 4

0 1 2 2 2 3 4 5 5 5

0 1 2 2 2 3 4 5 6 6

0 1 2 2 2 3 4 5 6 7

↑ ↑ ↑ ← ← ← ← ←

 ← ← ↑ ↑ ↑ ↑ ↑ ↑

↑ ↑ ← ← ← ← ← ←

↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑

↑ ↑ ↑ ↑ ← ← ← ←

↑ ↑ ↑ ↑ ↑ ← ← ←

↑ ↑ ↑ ↑ ↑ ↑ ← ←

↑ ↑ ↑ ↑ ↑ ↑ ↑ ←

↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑

OPTIMAL ACTION

↑ decrement 𝑖

← decrement 𝑗

 match a character and

decrement 𝑖 & 𝑗i

j

We produce a table of 𝑣𝑖,𝑗 = length of longest common subsequence between s[0:i] and t[0:j]

At the same time, we store the optimal action at each state (𝑖, 𝑗)

s =
 “alg

or
ithm

”

t = “logarithm”

To extract the match, start at the initial state 𝑖, 𝑗 = (len(s),len(t)), then follow the optimal actions.

A longest common substring of ALGORITHM and LOGARITHM is LGRITHM

The art of dynamic programming is to formulate the problem
so that we maximize overlap between subproblems.

Example. Find the least-cost way to compute the matrix product 𝐴0𝐴1 ⋯ 𝐴𝑛−1

Recall that matrix multiplication is associative: 𝐴𝐵𝐶𝐷𝐸 = 𝐴𝐵 𝐶𝐷 𝐸 = 𝐴 𝐵 𝐶𝐷 𝐸

𝐴𝐵𝐶𝐷𝐸

𝐴𝐵𝑀1𝐸

𝑀2𝑀1𝐸

𝑀2 𝑀3

𝑀4

Let’s think of the problem as “repeatedly, choose a pair of adjacent matrices to multiply”.

Let 𝑣(𝑒) be the minimum cost of multiplying matrices

with dimension-sequence 𝑒 = [𝑒0, 𝑒1, … , 𝑒𝑛]. Then

𝑣 𝑒 =

This is yucky because the dependency graph has lots of nodes
(one node for every possible 𝑒 for a given list of matrices).
For our other approach, #nodes is quadratic in 𝑛.

Example 3.2.1 Resource allocation
Several different university societies have all requested to book the sports hall, request 𝑘 having start time 𝑢𝑘 ∈ ℝ
and end time 𝑣𝑘 ∈ ℝ. The hall can only fit one activity at a time. What is the maximum number of requests that
can be satisfied without overlap?

09:00 12:00 15:00 18:00 21:00

A

B

C

D

E

F

G

H

I

EXERCISE
Find a different formulation, not based on
sets, so that the subproblems overlap better.

	Slide 1: How (not) to compute the Fibonacci numbers
	Slide 2: How (not) to compute the Fibonacci numbers
	Slide 3: 3.1 Practical dynamic programming
	Slide 4: Example: rod cutting
	Slide 5: Example 3.1.1 Matrix chain multiplication
	Slide 6
	Slide 7: Example 3.1.2 Longest common subsequence
	Slide 8
	Slide 9: How to extract the programme
	Slide 10: Example 3.1.2 Longest common subsequence
	Slide 11: The art of dynamic programming is to formulate the problem so that we maximize overlap between subproblems.
	Slide 12: Example 3.2.1 Resource allocation

