SECTION 3
Algorithm design

Is it worth doing cardio?

Equivalently,
\log (heartrate) $+\log ($ lifespan $)=$ const
and this is easier to see on a log-log plot.

Is it worth doing cardio?

It looks like maybe

$$
\text { heart rate }=\frac{\text { const }}{\text { lifespan }}
$$

\Rightarrow heartrate \times lifespan $=$ const
\Rightarrow total lifetime heartbeats $=$ const

Equivalently,

$\log ($ heartrate $)+\log ($ lifespan $)=$ const and this is easier to see on a log-log plot.

Let's suppose we have a fixed number of total lifetime heartbeats. If we want to live as long as possible, how much should we exercise?
(Exercise decreases resting heartrate $\boldsymbol{\omega}$, but it burns through our lifetime heartbeats $\boldsymbol{\uparrow} \boldsymbol{F}$.)
let $x=(r, b)$ be the current state, $r=$ resting heartrate and $b=$ theartbears remaining of of rodney.
let's invent a model:
7 we exercise:
this has the effect that. if we exercise earth day, r will b pulled down to a floor of 50 bpm

$b-b-(23 \times 60 \times r-60 \times 155)$
¿ 23 hours at heart rake r. I hour at heart rake 155 bpm
If we donit exercise:

$$
\begin{aligned}
& r \text { ont exercise: } \\
& r-r+\lambda(90-r) \quad \text { if we never exercise, } r \text {. } \\
& \text { will creep sp to a ceiling } \\
& b \leftarrow b-24 \times 60 \times r \quad
\end{aligned}
$$

let $r(x)=$ max possible remaining lifespan starting from stake $x=(r, b)$.
If $b \leq 0: r(x)=0$
If $b>0: \quad v(x)=\max _{a \in\{\text { exercises, doniticix }\}}\left\{1+v\left(\right.\right.$ next $\left.\left._{x, a}\right)\right\}$
terminal stares (death)
next $t_{x, a}$ is sherthanal for the four equations above specifying how x evolves

3.1 The Bellman equation and dynamic programming

We're given an initial state x_{0}, and we wish to choose a sequence of actions $\left[a_{0}, a_{1}, \ldots\right]$. If we're in state x and we take action a, we gain reward $x_{x, a}$, and move to nextstate $x_{x, a}$ (unless x is a terminal state, where no further actions are possible, in which case we gain termreward ${ }_{x}$).
We want to find the maximum possible total reward starting from x_{0}.

Bellman recursion

Let $v(x)$ be the total reward that can be gained starting in state x. Then

$$
v(x)=\left\{\begin{array}{lc}
\operatorname{termreward}_{x} & \text { if } x \text { is terminal } \\
\max _{a \in A}\left\{\operatorname{reward}_{x, a}+v\left(\text { nextstate }_{x, a}\right)\right\} & \text { otherwise }
\end{array}\right.
$$

We're given an initial state x_{0}, and we wish to choose a sequence of actions $\left[a_{0}, a_{1}, \ldots\right]$. If we're in state x a (unless x is a termi termreward $_{x}$).
We want to find the

How can I frame my task as "find an optimal sequence of actions"?

- What are the actions?
- What is the value/cost that I'm optimizing?

Bellman recursion
Let $v(x)$ be the total reward that can be gained starting in state x. Then

$$
v(x)=\left\{\begin{array}{lc}
\text { termreward }_{x} & \text { if } x \text { is terminal } \\
\max _{a \in A}\left\{\operatorname{reward}_{x, a}+v\left(\text { nextstate }_{x, a}\right)\right\} & \text { otherwise }
\end{array}\right.
$$

Example: rod cutting

A DIY supplier has a steel rod of length $n \in \mathbb{N}$, and a machine that can cut it into smaller pieces. Different lengths can be sold for different prices; a piece of length $\ell \in \mathbb{N}$ fetches p_{ℓ}.
How should it be cut, to maximize profit?

length	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$
price	$£ 1$	$£ 5$	$£ 8$	$£ 9$	$£ 10$	$£ 17$	$£ 17$	$£ 20$	$£ 24$	$£ 30$

Example: rod cutting
A DIY supplier has a steel rod of length $n \in \mathbb{N}$, and a machine that can cut it into smaller pieces. Different lengths can be sold for different prices; a piece of length $\ell \in \mathbb{N}$ fetches p_{ℓ}.
How should it be cut, to maximize profit?
Let $v(n)=$ max profit I can achieve from a rod of Cengry n. Then

$$
\begin{aligned}
V(1) & =P_{1} \\
V>12: V(n) & =P_{n} \vee \max _{1 \leq i^{i} \leq n-1}\left\{P_{i}+V\left(n-i^{i}\right)\right\}
\end{aligned}
$$

A(fernahiely:

$$
v(n)=\left\{\begin{array}{l}
0 \text { if } n \geq 0 \\
\max _{1 \leq i \leq n}\left\{P_{i}+v(n-i)\right\} \text { if } n>0 .
\end{array}\right.
$$

Sanity check: $\quad v(0)=0$

$$
\begin{aligned}
& v(1)=p_{1}+v(0)=p_{1} \\
& v(2)=\left(p_{1}+v(1)\right) v\left(p_{2}+v(0)\right)=\left(p_{1}+p_{1}\right) \vee P_{2}
\end{aligned}
$$

Example 3.1.1 Matrix chain multiplication

The cost of multiplying two matrices depends on their dimensions:

$$
\left[\begin{array}{ccc}
\cdot & \cdot & \cdot \\
\bullet & \cdot & \cdot
\end{array}\right] \times m \times\left[\begin{array}{cc}
\cdot & \cdot \\
\vdots & \cdot \\
\vdots & \cdot \\
\cdot & \cdot \\
m \times n
\end{array}\right]=\left[\begin{array}{cc}
\cdots & \cdots \\
\bullet & \cdot \\
\ell \times n
\end{array}\right]
$$

$\ell m n$ multiplications $+\ell(m-1) n$ additions For simplicity, let's take the total cost to be $\ell m n$.

If we want to compute the product of several matrices, we have a choice about the order of multiplication (because matrix multiplication is associative). For example,

$$
A B C D E=(A B)((C D) E)=A(B((C D) E))
$$

Find the least-cost way to compute the product $A_{0} \cdot A_{1} \cdot \cdots \cdot A_{n-1}$

$$
d_{0} \times d_{1} d_{1} \times d_{2} \quad d_{n-1} \times d_{n}
$$

Let $v(i, j)=$ min cost of multiplying $A_{i} A_{i+1} \cdots A_{j-1}$.
We want to find $v(0, n)$.

Try out some simple cases:
$V(0,1)=0 \quad\left(\begin{array}{l}\text { since we doit need to de an work to compute } \\ A_{0} \text { - irs right rhere, }\end{array}\right.$

$$
v(0,2)=d_{0} d_{1} d_{2} \quad\left({\underset{0}{\frac{A_{0}}{1} A_{1}} d_{0} \times d_{1} d_{1} \times d_{2}}_{\substack{1 \\ d_{0}}} \text { cost is } d_{0} d_{1} d_{2}\right)
$$

$$
v(0,3)=\min \left\{d_{0} d_{1} d_{3}+r(1,3), d_{0} d_{2} d_{3}+r(0,2)\right\}
$$

$$
-\left(A_{0} A_{1}\right) A_{2}
$$

extracoot $d_{0} d_{1} d_{3}$
General cape:

$$
v(i, j)=\left\{\begin{array}{l}
\text { if } j=i+1: 0 \\
\text { if } i=i+2 \quad d_{i} d_{i+1} d_{i+2} \text { Actually this is } j \text { oust a special can of of } \\
\text { if } j \geqslant i+2: \min _{i<k<j}\left\{d_{i} d_{k} d_{j}+v(i, k)+r(k, j)\right\}
\end{array}\right.
$$

and we can choose ans bracketing point $k \in\{i+1, \ldots, j-1\}$.

Example 3.1.2 Longest common subsequence

A subsequence of a string s is any string obtained by dropping zero or more characters from s. Given two strings s and t, what's the longest subsequence they have in common?

T	H	E	B	A	R	B	I	E	M	O	V	I	E

O	P	P	E	N	H	E	I	M	E	R

H	E	R
R common subsequence of length 3		

Let $v(s, t)=$ length of longest common subce quence between s and t.

Example 3.1.2 Longest common subsequence

A subsequence of a string s is any string obtained by dropping zero or more characters from s. Given two strings s and t, what's the longest subsequence they have in common?

Let's frame the task as choosing a sequence from these actions:
i decrement i
j decrement j
m match a character and decrement i \& j

$$
\begin{aligned}
& v_{i, j}= \text { lengit of CCS in } S[0: i] \text { and } t[0: j] \\
& w_{e} \text { want of find } v(\ln (s), \ln (t)) \\
& v_{i, j}=\left\{\begin{array}{llll}
0 & \text { if } i=0 \text { or } j=0 \\
(1+ & \left.v_{i-1, j-1}\right) \vee & v_{i-1, j} \vee v_{i, j-1} \quad \text { if } s[i-1]=t[j-1] \\
v_{i-1, j} & \vee v_{i, j-1} & \text { if } s[i-1] \neq t[j-1] .
\end{array}\right.
\end{aligned}
$$

The Translation strategy for designing algorithms

It's up to us how to translate the problem into "choose a sequence of actions". How can we make sure that our translation is legitimate?

Searching for the highest-value action sequence will find us the longest common substring, when ...

1. Every common substring can be achieved through some valid action sequence, and every action sequence produces a common substring.
2. The higher the value of the action sequence, the longer its corresponding common substring.

Extracting the programme

We've seen how to compute the value $v(x)$ of the optimal programme (i.e. action sequence) starting from state x :

```
# The Bellman recursion
def v(x):
    if is_terminal(x):
        return terminal_reward(x)
    else:
        return max(reward(x,a) + v(nextstate(x,a)) for a in ACTIONS)
```

If we also want to extract an optimal programme,

```
def vp(x):
    # return a pair with optimal (value, programme)
    if is_terminal(x):
        return terminal_reward(x), []
    else:
        children = [vp(nextstate(x,a)) for a in ACTIONS]
        vals,progs = zip(*children)
        vals = [reward(x,a) + v for a,v in zip(ACTIONS,vals)]
        imax = index of max item in vals
        return vals[imax], progs[imax] with ACTIONS[imax] prepended
```


QUESTION
What's the extra memory cost of extracting the programme, for a tree of height h ?

What can go wrong?

The running time of naïve recursion is typically exponential in the size of the problem, making it impractical for all but the smallest problems.

Workarounds

* IA Algorithms: look at problems with a special "overlapping" structure that permits efficient solution.
* IB Artificial Intelligence: branch-and-bound, backtracking
* MPhil: Reinforcement learning, to approximate the value function
* Maths tripos: analytical methods for approximating large problems

