
Algorithm design

SECTION 3



Is it worth doing cardio?

Rest Heart Rate and Life Expectancy, Herbert J. Levine, 
Journal of the American College of Cardiology (1997)
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It looks like maybe

heart rate =
const

lifespan

⟹  total lifetime heartbeats = const

⟹  heartrate × lifespan = const

Equivalently,
log heartrate + log lifespan = const
and this is easier to see on a 
log-log plot.
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Rest Heart Rate and Life Expectancy, Herbert J. Levine, 
Journal of the American College of Cardiology (1997)

Equivalently,
log heartrate + log lifespan = const
and this is easier to see on a 
log-log plot.

It looks like maybe

heart rate =
const

lifespan

⟹  total lifetime heartbeats = const

⟹  heartrate × lifespan = const



Let’s suppose we have a fixed number of total lifetime heartbeats.
If we want to live as long as possible, how much should we exercise?

(Exercise decreases resting heartrate , but it burns through our lifetime heartbeats .)



3.1 The Bellman equation and dynamic programming
Problem statement

We’re given an initial state 𝑥0, and we wish to choose a sequence of actions [𝑎0, 𝑎1, … ].

If we’re in state 𝑥 and we take action 𝑎, we gain reward𝑥,𝑎, and move to nextstate𝑥,𝑎
(unless 𝑥 is a terminal state, where no further actions are possible, in which case we gain 
termreward𝑥).

We want to find the maximum possible total reward starting from 𝑥0.

Bellman recursion

Let 𝑣(𝑥) be the total reward that can be gained starting in state 𝑥. Then

𝑣 𝑥 = ቐ
termreward𝑥MMMMMMMMNMM if 𝑥 is terminal

max
𝑎∈𝐴

reward𝑥,𝑎 + 𝑣 nextstate𝑥,𝑎 otherwise
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How can I frame my task as 
“find an optimal sequence 
of actions”?

▪ What are the actions? 
▪ What is the value/cost that I’m optimizing? 



Example: rod cutting
A DIY supplier has a steel rod of length 𝑛 ∈ ℕ, and a machine that can cut it into smaller pieces.
Different lengths can be sold for different prices; a piece of length ℓ ∈ ℕ fetches 𝑝ℓ.

How should it be cut, to maximize profit?

length 1 2 3 4 5 6 7 8 9 10

price £1 £5 £8 £9 £10 £17 £17 £20 £24 £30

𝑛 = 10

cuts-choice 1

cuts-choice 2

cuts-choice 3
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Example 3.1.1  Matrix chain multiplication
The cost of multiplying two matrices depends on their dimensions:

ℓ × 𝑚
𝑚 × 𝑛

ℓ × 𝑛

ℓ𝑚𝑛 multiplications + ℓ 𝑚 − 1 𝑛 additions
For simplicity, let’s take the total cost to be ℓ𝑚𝑛.

If we want to compute the product of several matrices, we have a choice about the order of 
multiplication (because matrix multiplication is associative). For example,

𝐴𝐵𝐶𝐷𝐸 = 𝐴𝐵 𝐶𝐷 𝐸 = 𝐴 𝐵 𝐶𝐷 𝐸

Find the least-cost way to compute the product     𝐴0  ⋅  𝐴1  ⋅  ⋯ ⋅  𝐴𝑛−1
𝑑0 × 𝑑1 𝑑1 × 𝑑2 𝑑𝑛−1 × 𝑑𝑛





Example 3.1.2  Longest common subsequence
A subsequence of a string 𝑠 is any string obtained by dropping zero or more characters from 𝑠. 
Given two strings 𝑠 and 𝑡, what’s the longest subsequence they have in common?

O I common subsequence of length 2

H E common subsequence of length 3R

T H E B A R B I E M O V I E

O P P E N H E I M E R
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T H E B A R B I E M O V I E
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i

j

Let’s frame the task as 
choosing a sequence 
from these actions:

𝒾 decrement i

𝒿 decrement j

𝓂 match a character and 
decrement i & j



The Translation strategy for designing algorithms

Searching for the highest-value action sequence will find us the longest common substring, when ...

1. Every common substring can be achieved through some valid action sequence,
and every action sequence produces a common substring.

2. The higher the value of the action sequence, 
the longer its corresponding common substring.

common 
substring’s 
length

𝒾𝒾𝒾𝒾𝒾𝒾𝒾𝒾 𝓂 𝒾𝒾 𝓂 𝒿𝒿𝒿 𝓂 𝒾

𝒾𝒾𝒾𝒾𝒾𝒾𝒾𝒾 𝓂 𝒿𝒿𝒿 𝒾𝒾 𝓂𝓂 𝒿𝒿𝒿𝒿𝒿
4

3

2

1

action-
sequence’s 
value

HEIM

HIM HER

EE HI HR

H E I R M

ME

It’s up to us how to translate the problem into “choose a sequence of actions”.
How can we make sure that our translation is legitimate? 



Extracting the programme

We’ve seen how to compute the value 𝑣(𝑥) of the 
optimal programme (i.e. action sequence) starting from state 𝑥:

# The Bellman recursion

def v(x):
  if is_terminal(x):
    return terminal_reward(x)
  else:
    return max(reward(x,a) + v(nextstate(x,a)) for a in ACTIONS)

If we also want to extract an optimal programme,

def vp(x):
  # return a pair with optimal (value, programme)

  if is_terminal(x):
    return terminal_reward(x), []

  else:
    children = [vp(nextstate(x,a)) for a in ACTIONS]
    vals,progs = zip(*children)

    vals = [reward(x,a) + v for a,v in zip(ACTIONS,vals)]
    imax = index of max item in vals

    return vals[imax], progs[imax] with ACTIONS[imax] prepended

QUESTION
What’s the extra memory cost of 
extracting the programme, for a 
tree of height ℎ?



What can go wrong?

The running time of naïve recursion is typically 
exponential in the size of the problem, making it 
impractical for all but the smallest problems.

Workarounds

❖ IA Algorithms: look at problems with a special 
“overlapping” structure that permits efficient solution.

❖ IB Artificial Intelligence: branch-and-bound, backtracking

❖ MPhil: Reinforcement learning, to approximate 
the value function

❖ Maths tripos: analytical methods for approximating large 
problems
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