SECTION 3

Algorithm design



s it worth doing cardio?

u

It looks like maybe

const
heart rate = ——
lifespan

— heartrate X lifespan = const

—> total lifetime heartbeats = const

Equivalently,

log(heartrate) + log(lifespan) = const
and this is easier to see on a

log-log plot.

resting heart rate [bpm]

Rest Heart Rate and Life Expectancy, Herbert J. Levine,
average lifespan [years] Journal of the American College of Cardiology (1997)
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Let’s suppose we have a fixed number of total lifetime heartbeats.
If we want to live as long as possible, how much should we exercise?

(Exercise decreases resting heartrate # , but it burns through our lifetime heartbeats § .)
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3.1 The Bellman equation and dynamic programming

Problem statement pregramme
We’re given an initial state x;, and we wish to choose a sequence of actions [ay, a4, ... .

If we’re in state x and we take action a, we gain reward, ,, and move to nextstate, ,
(unless x is a terminal state, where no further actions are possible, in which case we gain

termreward,,).
We want to find the maximum possible total reward starting from x,,.

ARk

Bellman recursion
Let v(x) be the total reward that can be gained starting in state x. Then

termreward, if x is terminal

v(x) = max {reward, , + v(nextstate,,)}  otherwise
a



How can | frame my task as
“find an optimal sequence

of actions”?

= What are the actions?
= What is the value/cost that I’'m optimizing?




Example: rod cutting

A DIY supplier has a steel rod of length n € N, and a machine that can cut it into smaller pieces.
Different lengths can be sold for different prices; a piece of length £ € N fetches p,.

How should it be cut, to maximize profit?

length 1 2 3 4 5 6 7 8 9 10
price £l £5 £8 £9 £10 £17 £17 £20 £24 £30
n =10
- CheteO £390
cuts-choice 1 £ 3 4 é‘\ . é ? = 227
cuts-choice 2 £ \7 + £4 ~ £26

cuts-choice 3 £ 26



A DIY supplier has a steel rod of length n € N, and a machine that can cut it into smaller pieces.

Different lengths can be sold for different prices; a piece of length £ € N fetches p,.

How should it be cut, to maximize profit?
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Example 3.1.1 Matrix chain multiplication

The cost of multiplying two matrices depends on their dimensions:

[: e ‘k < 1 3 [ ‘.] £mn multiplications + £(m — 1)n additions

B For simplicity, let’s take the total cost to be fmn.

£Xm fXn

mXn

If we want to compute the product of several matrices, we have a choice about the order of
multiplication (because matrix multiplication is associative). For example,

ABCDE = (AB)((CD)E) = A (B((CD)E))

Find the least-cost way to compute the product Ay - A - == - A,
do Xdqy dy Xd, d,_1 X dy
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Example 3.1.2 Longest common subsequence

A subsequence of a string s is any string obtained by dropping zero or more characters from s.
Given two strings s and t, what’s the longest subsequence they have in common?

o) | common subsequence of length 2
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Example 3.1.2 Longest common subsequence

A subsequence of a string s is any string obtained by dropping zero or more characters from s.
Given two strings s and t, what’s the longest subsequence they have in common?

Let’s frame the task as
choosing a sequence
from these actions:

1 decrement i

7 decrement j

m  match a character and
decrement i & j
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The Translation strategy for designing algorithms

It’s up to us how to translate the problem into “choose a sequence of actions”.
How can we make sure that our translation is legitimate?

common action-
substring’s sequence’s
length value
41l HEIM Q0
AL M JJF A4 mm ffF57F
3|[HIM ][ HER] ﬁoo\émuiumamﬁjmi
———
2|(EE](HIJ(HR)ME] Q00
| DR 00000

Searching for the highest-value action sequence will find us the longest common substring, when ...

1. Every common substring can be achieved through some valid action sequence,
and every action sequence produces a common substring.

2. The higher the value of the action sequence,
the longer its corresponding common substring.



Extracting the programme

We’ve seen how to compute the value v(x) of the

optimal programme (i.e. action sequence) starting from state x:

# The Bellman recursion
def v(x):
if is_terminal(x):
return terminal_reward(x)
else:

return max(reward(x,a) + v(nextstate(x,a)) for a in ACTIONS)

If we also want to extract an optimal programme,

def vp(x):
# return a pair with optimal (value, programme)
if is_terminal(x):
return terminal_reward(x), []
else:
children = [vp(nextstate(x,a)) for a in ACTIONS]
vals,progs = zip(*children)

vals

[reward(x,a) + v for a,v in zip(ACTIONS,vals)]
imax

index of max item in vals

return vals[imax], progs[imax] with ACTIONS[imax] prepended

ARk

QUESTION
What’s the extra memory cost of

extracting the programme, for a
tree of height h?



What can go wrong?

The running time of naive recursion is typically
exponential in the size of the problem, making it
impractical for all but the smallest problems.

Workarounds

* |A Algorithms: look at problems with a special
“overlapping” structure that permits efficient solution.

* IB Artificial Intelligence: branch-and-bound, backtracking

** MPhil: Reinforcement learning, to approximate
the value function

** Maths tripos: analytical methods for approximating large
problems

ARk
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