
IBM 83 Card Sorter (1955) sorts 1000 cards per minute



the “age” block

HOLLERITH 1890 CENSUS TABULATOR CARD

One of these cards was punched, for every census respondent

as punched for an 18 year old

The tabulating machine could then be used to 
sort all the cards by age, using “radix sort” …



2.14.3 Radix sort
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What sorcery is this!?
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2. Sort them by 

their last digit

4. Sort them by 

their first digit

def radixsort(x):

  for each digit d, starting from
  the least significant:

    stably sort x by digit d

    # assert x is in order with
    # respect to digits d:end

A sorting algorithm is said to be 
stable if, for items with equal 
keys, their order in the input is 
preserved in the output.

2.13 Stability



Python’s built-in sort is stable.

# WANT: stably sort these names by length
names = ['Charlie', 'Frances', 'Sian', 'Alex']

# 1. Extend the records to include their original position
names_ext = [(i,n) for i,n in enumerate(names)]

# 2. Sort by desired key, breaking ties by original position
sorted(names_ext, key = lambda v: (len(v[1]), v[0]))

[(2, 'Sian'), (3, 'Alex'), (0, 'Charlie'), (1, 'Frances')]

This takes space Θ(𝑛) to store the extended records.

If we want stability from a sorting algorithm that isn’t stable, 
simply extend the sort key to break ties by original position. 



The cost of sorting

Algorithm
Worst-case 

running time

any algorithm Ω(𝑛 log 𝑛)

InsertSort
BinaryInsertSort
SelectSort
QuickSort

Θ(𝑛2)

MergeSort
HeapSort

Θ(𝑛 log 𝑛)

Tabulating 
machine

Θ(n)



2.14.1 CountingSort
There’s no “magic in the machine” that lets it bypass the running-time lower bound. 
Here’s a code version of one pass of the tabulating machine.

Suppose we have 𝑛 items to sort, and they are all integers in {1, … , 𝑚} where 𝑚 is fixed.

def countingsort(x, m):

  # Count num.occurrences of each value
  counts = …

  # Figure out the first location
  # for each possible value
  nextpos = …

  y = new array of same size as x

  # Go through x and place each item
  # into its correct location
  for each value v in x:
    y[nextpos[v]] = v
    nextpos[v] += 1

  return y
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Q. What position 
should the first 
‘a’ go in? And ‘b’, 
and ‘c’?



Theorem. Given any sorting algorithm, let 𝑓(𝑛) be its worst-case number of 
comparisons for inputs of size 𝑛. Then 𝑓(𝑛) is Ω(𝑛 log 𝑛).

Proof. Consider an arbitrary input 𝑥 with size 𝑥 = 𝑛. Consider the algorithm’s decision tree 
i.e. a tree where each node represents the state of the data structure just before it makes a comparison whose outcome depends on 𝑥.

Y
x[0]>x[1]?

x[1]>x[2]? x[1]>x[2]?

N

x[0] and x[1] 
swapped

Y

x[0]>x[1]?

start

Y

x[0]>x[1]?

NN

swap swap

Every path through this tree corresponds to a specific sequence of 
operations, and results in a specific permutation of the items of 𝑥.

There are 𝑛! possible orderings of the items of 𝑥. Each ordering 
requires a different permutation to sort it. Therefore this tree has 
#leaves ≥ 𝑛!

Note that any binary tree of height ℎ has #leaves ≤ 2ℎ. 

The height of this tree is 𝑓(𝑛), and so

𝑛! ≤ #leaves ≤ 2𝑓 𝑛  hence 𝑓 𝑛 ≥ log2 𝑛!

Since log2 𝑛! = Θ 𝑛 log 𝑛 , we conclude 𝑓 𝑛  is Ω(𝑛 log 𝑛).





There is a flaw in this reasoning; and if we know 
something about the keys, we can do better than 
Ω(𝑛 log 𝑛).

What’s the flaw?  PLEASE ANSWER ON MOODLE



There is a flaw in this reasoning; and if we know 
something about the keys, we can do better than 
Ω(𝑛 log 𝑛).

What’s the flaw?  PLEASE ANSWER ON MOODLE

I am ∀belard. All the steps of 
my proof are true in all cases.

I am ∃loise. There exists a 
proof step which is wrong, and 
there exists a concrete 
example which demonstrates 
it’s wrong. 

LET ME SHOW THEM TO YOU.



[0,0.2) [0.2,0.4) [0.4,0.6) [0.6,0.8) [0.8,1]

2.14.2 BucketSort
Here’s a different way to benefit from extra information about the sort keys.

Let’s assume they are uniformly distributed in the range [0,1].

def bucketsort(x, a):
  B = ⌈len(x)/a⌉
  buckets = array of B empty lists

  for each item v in x:
    append v to bucket ⌊key(v) × B⌋

  # assert: average number of items
  # in each bucket is ≈a

  for each bucket:
    sort it with a 𝑂(𝑛2) algorithm
    output its values

0.850.870.65

0.170.110.430.94

0.880.770.730.91

0.650.17
0.11 0.43

0.94

0.77
0.73

0.91
0.88
0.87
0.85
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(Binary)InsertSort

SelectSort

HeapSort

QuickSort

Who really needs to learn about sorting algorithms?
Isn’t this a choice that’s best left to library designers?

The point is to learn general lessons about algorithm design

❖ Always bear in mind the algorithm’s worst-case cost, in both running time and extra memory
❖ … but don’t take it too seriously: constants matter, and typical-case performance is important too
❖ … and there may be other criteria e.g. is it in-place? is it stable?

❖ If our algorithm’s 𝑂 doesn’t match the problem’s Ω, we’re missing something
❖ … but maybe there’s special structure and a general-purpose lower bound isn’t right

❖ Identify the strong points of each algorithm. Mix-and-match, and re-use strategies.

MergeSort

BucketSort



Typical-case performance is important too

Python ≥2.3 uses TimSort, by Tim Peters.
“It has supernatural performance on many kinds of partially ordered arrays (less than 
log2 𝑛! comparisons needed, and as few as 𝑛 − 1).

“On arrays with many kinds of pre-existing order, this blows [the previous algorithm] out of 
the water. I believe that lists very often do have exploitable partial order in real life, and 
this is the strongest argument in favor of timsort.

“In a nutshell, the main routine marches over the array once, left to right, alternately 
identifying the next run, then merging it into the previous runs ‘intelligently’.  Everything 
else is complication for speed, and some hard-won measure of memory efficiency.”

https://github.com/python/cpython/blob/main/Objects/listsort.txt
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2.12 Computing statistics

A statistic is a numerical summary of a dataset.
Examples: mean, median, maximum, variance, skewness, kurtosis.

QUESTION 
We want to compute the maximum of an array 
of length 𝑛. Give a lower bound on the number 
of comparisons needed.

QUESTION 
We want to compute the median of an array of 
length 𝑛. What’s a fast way to do this?

Let’s now try to apply these lessons ...



∀belard∃louise

The final big lesson from this part of the course...

When we say 𝑓(𝑛) is 𝑂(𝑔(𝑛)), or Ω, or Θ, this is a 
“neutral” maths statement about two functions.

Here’s how we typically use it in analysing algorithms:

“Let 𝑓(𝑛) be the worst-case cost over all 
inputs of size 𝑛. Then 𝑓(𝑛) is 𝑂(𝑔 𝑛 ).”

“Let 𝑓(𝑛) be the cost for a particular input I have 
designed of size 𝑛. Then 𝑓(𝑛) is Θ(𝑔 𝑛 ).”

“Let 𝑓(𝑛) be the best-case cost over all inputs of 
size 𝑛. Then 𝑓(𝑛) is Ω(𝑔 𝑛 ).”

When we say “My algorithm is O(n2)”
we really mean “the worst-case is O(n2)”.

When we construct a particular troublesome input for which the 
cost is O(n2), we can conclude “The worst case for my algorithm 
is Ω(n2)”. (The actual worst case might be worse than our 
troublesome input, so we have to use Ω.)

We might informally say “My algorithm is Ω(n2)”, meaning 
that the best case is Ω(n2).

“Let 𝑓(𝑛) be the expected (i.e. average) cost for a 
random input of size 𝑛. Then 𝑓(𝑛) is Θ(𝑔 𝑛 ).”



The last two slides weren’t covered in the lecture.



Verifying correctness of algorithms

❖ Assertions are a stonking good idea

❖ … especially invariants, e.g. assertions of the form “at iteration 𝑖, the current state 𝒮 satisfies property 𝑃𝑖(𝒮)”

(Binary)InsertSort SelectSort

HeapSort

MergeSort BucketSort

QuickSort
BubbleSort



2.8 BubbleSort

def bubblesort(x):
  while True:
    any_swaps = False
    for i in 0..(len(x)-2):
      if x[i] > x[i+1]:
        swap x[i] with x[i+1]
        any_swaps = True
    if not any_swaps:
      break

ii+1i+1

do first pass

initial state

do 2nd pass

repeat until
a pass with
no swaps

QUESTION. What’s the 
maximum number of 
passes needed?

This algorithm isn’t useful for anything at all. Learn it, so you don’t reinvent it!
(Plus there’s a nice invariant for analysing its performance.)
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