
IBM 83 Card Sorter (1955) sorts 1000 cards per minute

the “age” block

HOLLERITH 1890 CENSUS TABULATOR CARD

One of these cards was punched, for every census respondent

as punched for an 18 year old

The tabulating machine could then be used to
sort all the cards by age, using “radix sort” …

2.14.3 Radix sort

0 1 2 3 4 5 6 7 8 9

1. Start with a

stack of unsorted

punch cards

2. Sort them by

their last digit

3. Gather them

into a stack

0 1 2 3 4 5 6 7 8 9

4. Sort them by

their first digit

5. Gather them

into a stack

What sorcery is this!?

2. Sort them by

their last digit

4. Sort them by

their first digit

0 1 2 3 4 5 6 7 8 9

3. Gather them

into a stack

0 1 2 3 4 5 6 7 8 9

2. Sort them by

their last digit

4. Sort them by

their first digit

def radixsort(x):

 for each digit d, starting from
 the least significant:

 stably sort x by digit d

 # assert x is in order with
 # respect to digits d:end

A sorting algorithm is said to be
stable if, for items with equal
keys, their order in the input is
preserved in the output.

2.13 Stability

Python’s built-in sort is stable.

WANT: stably sort these names by length
names = ['Charlie', 'Frances', 'Sian', 'Alex']

1. Extend the records to include their original position
names_ext = [(i,n) for i,n in enumerate(names)]

2. Sort by desired key, breaking ties by original position
sorted(names_ext, key = lambda v: (len(v[1]), v[0]))

[(2, 'Sian'), (3, 'Alex'), (0, 'Charlie'), (1, 'Frances')]

This takes space Θ(𝑛) to store the extended records.

If we want stability from a sorting algorithm that isn’t stable,
simply extend the sort key to break ties by original position.

The cost of sorting

Algorithm
Worst-case

running time

any algorithm Ω(𝑛 log 𝑛)

InsertSort
BinaryInsertSort
SelectSort
QuickSort

Θ(𝑛2)

MergeSort
HeapSort

Θ(𝑛 log 𝑛)

Tabulating
machine

Θ(n)

2.14.1 CountingSort
There’s no “magic in the machine” that lets it bypass the running-time lower bound.
Here’s a code version of one pass of the tabulating machine.

Suppose we have 𝑛 items to sort, and they are all integers in {1, … , 𝑚} where 𝑚 is fixed.

def countingsort(x, m):

 # Count num.occurrences of each value
 counts = …

 # Figure out the first location
 # for each possible value
 nextpos = …

 y = new array of same size as x

 # Go through x and place each item
 # into its correct location
 for each value v in x:
 y[nextpos[v]] = v
 nextpos[v] += 1

 return y

a c a a b a

b

b c b b

counts

a

b

c

4

5

2

nextpos

a

b

c

x

y
0 1 2 3 4 5 6 7 8 9 10 11

10

2 3

5

0

4

1

9

Q. What position
should the first
‘a’ go in? And ‘b’,
and ‘c’?

Theorem. Given any sorting algorithm, let 𝑓(𝑛) be its worst-case number of
comparisons for inputs of size 𝑛. Then 𝑓(𝑛) is Ω(𝑛 log 𝑛).

Proof. Consider an arbitrary input 𝑥 with size 𝑥 = 𝑛. Consider the algorithm’s decision tree
i.e. a tree where each node represents the state of the data structure just before it makes a comparison whose outcome depends on 𝑥.

Y
x[0]>x[1]?

x[1]>x[2]? x[1]>x[2]?

N

x[0] and x[1]
swapped

Y

x[0]>x[1]?

start

Y

x[0]>x[1]?

NN

swap swap

Every path through this tree corresponds to a specific sequence of
operations, and results in a specific permutation of the items of 𝑥.

There are 𝑛! possible orderings of the items of 𝑥. Each ordering
requires a different permutation to sort it. Therefore this tree has
#leaves ≥ 𝑛!

Note that any binary tree of height ℎ has #leaves ≤ 2ℎ.

The height of this tree is 𝑓(𝑛), and so

𝑛! ≤ #leaves ≤ 2𝑓 𝑛 hence 𝑓 𝑛 ≥ log2 𝑛!

Since log2 𝑛! = Θ 𝑛 log 𝑛 , we conclude 𝑓 𝑛 is Ω(𝑛 log 𝑛).

There is a flaw in this reasoning; and if we know
something about the keys, we can do better than
Ω(𝑛 log 𝑛).

What’s the flaw? PLEASE ANSWER ON MOODLE

There is a flaw in this reasoning; and if we know
something about the keys, we can do better than
Ω(𝑛 log 𝑛).

What’s the flaw? PLEASE ANSWER ON MOODLE

I am ∀belard. All the steps of
my proof are true in all cases.

I am ∃loise. There exists a
proof step which is wrong, and
there exists a concrete
example which demonstrates
it’s wrong.

LET ME SHOW THEM TO YOU.

[0,0.2) [0.2,0.4) [0.4,0.6) [0.6,0.8) [0.8,1]

2.14.2 BucketSort
Here’s a different way to benefit from extra information about the sort keys.

Let’s assume they are uniformly distributed in the range [0,1].

def bucketsort(x, a):
 B = ⌈len(x)/a⌉
 buckets = array of B empty lists

 for each item v in x:
 append v to bucket ⌊key(v) × B⌋

 # assert: average number of items
 # in each bucket is ≈a

 for each bucket:
 sort it with a 𝑂(𝑛2) algorithm
 output its values

0.850.870.65

0.170.110.430.94

0.880.770.730.91

0.650.17
0.11 0.43

0.94

0.77
0.73

0.91
0.88
0.87
0.85

[0,0.2) [0.2,0.4) [0.4,0.6) [0.6,0.8) [0.8,1]

2.14.2 BucketSort
Here’s a different way to benefit from extra information about the sort keys.

Let’s assume they are uniformly distributed in the range [0,1].

def bucketsort(x, a):
 B = ⌈len(x)/a⌉
 buckets = array of B empty lists

 for each item v in x:
 append v to bucket ⌊key(v) × B⌋

 # assert: average number of items
 # in each bucket is ≈a

 for each bucket:
 sort it with a 𝑂(𝑛2) algorithm
 output its values

0.850.870.65

0.170.110.430.94

0.880.770.730.91

0.650.17
0.11 0.43

0.94

0.77
0.73

0.91
0.88
0.87
0.85

(Binary)InsertSort

SelectSort

HeapSort

QuickSort

Who really needs to learn about sorting algorithms?
Isn’t this a choice that’s best left to library designers?

The point is to learn general lessons about algorithm design

❖ Always bear in mind the algorithm’s worst-case cost, in both running time and extra memory
❖ … but don’t take it too seriously: constants matter, and typical-case performance is important too
❖ … and there may be other criteria e.g. is it in-place? is it stable?

❖ If our algorithm’s 𝑂 doesn’t match the problem’s Ω, we’re missing something
❖ … but maybe there’s special structure and a general-purpose lower bound isn’t right

❖ Identify the strong points of each algorithm. Mix-and-match, and re-use strategies.

MergeSort

BucketSort

Typical-case performance is important too

Python ≥2.3 uses TimSort, by Tim Peters.
“It has supernatural performance on many kinds of partially ordered arrays (less than
log2 𝑛! comparisons needed, and as few as 𝑛 − 1).

“On arrays with many kinds of pre-existing order, this blows [the previous algorithm] out of
the water. I believe that lists very often do have exploitable partial order in real life, and
this is the strongest argument in favor of timsort.

“In a nutshell, the main routine marches over the array once, left to right, alternately
identifying the next run, then merging it into the previous runs ‘intelligently’. Everything
else is complication for speed, and some hard-won measure of memory efficiency.”

https://github.com/python/cpython/blob/main/Objects/listsort.txt

C.S. THEORY ALGORITHMS

S Y
S

T
E

M
S

MACHINE LEARNINGMODELLING
SCIENCE /
SYNTHETIC

MATHS /
ANALYTIC

2.12 Computing statistics

A statistic is a numerical summary of a dataset.
Examples: mean, median, maximum, variance, skewness, kurtosis.

QUESTION
We want to compute the maximum of an array
of length 𝑛. Give a lower bound on the number
of comparisons needed.

QUESTION
We want to compute the median of an array of
length 𝑛. What’s a fast way to do this?

Let’s now try to apply these lessons ...

∀belard∃louise

The final big lesson from this part of the course...

When we say 𝑓(𝑛) is 𝑂(𝑔(𝑛)), or Ω, or Θ, this is a
“neutral” maths statement about two functions.

Here’s how we typically use it in analysing algorithms:

“Let 𝑓(𝑛) be the worst-case cost over all
inputs of size 𝑛. Then 𝑓(𝑛) is 𝑂(𝑔 𝑛).”

“Let 𝑓(𝑛) be the cost for a particular input I have
designed of size 𝑛. Then 𝑓(𝑛) is Θ(𝑔 𝑛).”

“Let 𝑓(𝑛) be the best-case cost over all inputs of
size 𝑛. Then 𝑓(𝑛) is Ω(𝑔 𝑛).”

When we say “My algorithm is O(n2)”
we really mean “the worst-case is O(n2)”.

When we construct a particular troublesome input for which the
cost is O(n2), we can conclude “The worst case for my algorithm
is Ω(n2)”. (The actual worst case might be worse than our
troublesome input, so we have to use Ω.)

We might informally say “My algorithm is Ω(n2)”, meaning
that the best case is Ω(n2).

“Let 𝑓(𝑛) be the expected (i.e. average) cost for a
random input of size 𝑛. Then 𝑓(𝑛) is Θ(𝑔 𝑛).”

The last two slides weren’t covered in the lecture.

Verifying correctness of algorithms

❖ Assertions are a stonking good idea

❖ … especially invariants, e.g. assertions of the form “at iteration 𝑖, the current state 𝒮 satisfies property 𝑃𝑖(𝒮)”

(Binary)InsertSort SelectSort

HeapSort

MergeSort BucketSort

QuickSort
BubbleSort

2.8 BubbleSort

def bubblesort(x):
 while True:
 any_swaps = False
 for i in 0..(len(x)-2):
 if x[i] > x[i+1]:
 swap x[i] with x[i+1]
 any_swaps = True
 if not any_swaps:
 break

ii+1i+1

do first pass

initial state

do 2nd pass

repeat until
a pass with
no swaps

QUESTION. What’s the
maximum number of
passes needed?

This algorithm isn’t useful for anything at all. Learn it, so you don’t reinvent it!
(Plus there’s a nice invariant for analysing its performance.)

	Slide 1
	Slide 2
	Slide 3: 2.14.3 Radix sort
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8: The cost of sorting
	Slide 9: 2.14.1 CountingSort
	Slide 10
	Slide 11
	Slide 13
	Slide 14
	Slide 15: 2.14.2 BucketSort
	Slide 16: 2.14.2 BucketSort
	Slide 17: Who really needs to learn about sorting algorithms? Isn’t this a choice that’s best left to library designers?
	Slide 18: Typical-case performance is important too
	Slide 19: 2.12 Computing statistics
	Slide 20
	Slide 21
	Slide 22
	Slide 23: 2.8 BubbleSort

