
Algorithm
Worst-case

running time

any algorithm Ω(𝑛 log 𝑛)

InsertSort Θ(𝑛2)

BinaryInsertSort Θ(𝑛2) #comparisons is 𝑂(𝑛 log𝑛)

SelectSort Θ(𝑛2) #writes is 𝑂(𝑛)

QuickSort Θ(𝑛2) average case is Θ(𝑛 log 𝑛)

MergeSort 𝑂(𝑛 log 𝑛) uses Θ(𝑛) extra memory

HeapSort 𝑂(𝑛 log𝑛)

2.11 Quicksort

Let’s implement it more carefully, being explicit about assignments as well as
comparisons, so we can find the total running time.

let rec quicksort = function
 | [] -> []
 | [x] -> [x]
 | pivot::xs ->
 let rec partition lefts rights = function
 | [] -> (quicksort lefts) @ (pivot :: quicksort rights)
 | y::ys ->
 if (y <= pivot) then
 partition (y::lefts) rights ys
 else
 partition lefts (y::rights) ys
 in
 partition [] [] xs

Our OCaml quicksort copies the items. It is still pretty fast, and it is much
easier to understand. It is not hard to prove that quicksort does 𝑛 log 𝑛
comparisons, in the average case.

pdef quicksort(x):

1. Pick the last item to be the
pivot, 𝑝 = 𝑥[len 𝑥 − 1].

2. Partition the array, so that
it has the form
(items ≤ 𝑝) ∷ 𝑝 ∷ (items ≥ 𝑝)

3. The pivot 𝑝 is now in its
correct place. Call quicksort
on the left portion, and on the
right portion.

items ≤ p items ≥ p

items ≤ p items ≥ p

i j

p

i j

find an out-of-order
pair and swap them

i
j

repeat

…

>p

<p

swap the pivot
into place

Partitioning complete!

def quicksort(x):

1. Pick the last item to be the
pivot, 𝑝 = 𝑥[len 𝑥 − 1].

2. Partition the array, so that
it has the form
(items ≤ 𝑝) ∷ 𝑝 ∷ (items ≥ 𝑝)

3. The pivot 𝑝 is now in its
correct place. Call quicksort
on the left portion, and on the
right portion.

def partition(x, p):
 i = just before first item
 j = just before p
 while True:
 while i < j and x[i] <= p: i++
 while i < j and x[j-1] >= p: j--
 if i < j:
 swap x[i] with x[j-1]
 i++, j--
 swap p with x[j]

def quicksort(x):

1. Pick the last item to be the
pivot, 𝑝 = 𝑥[len 𝑥 − 1].

2. Partition the array, so that
it has the form
(items ≤ 𝑝) ∷ 𝑝 ∷ (items ≥ 𝑝)

3. The pivot 𝑝 is now in its
correct place. Call quicksort
on the left portion, and on the
right portion.

p

def partition(x, p):
 i = just before first item
 j = just before p
 while True:
 while i < j and x[i] <= p: i++
 while i < j and x[j-1] >= p: j--
 if i < j:
 swap x[i] with x[j-1]
 i++, j--
 swap p with x[j]

p

QUESTION
If we manage to split the array in half each pass,
what’s the running time (𝑂)?

def quicksort(x):

1. Pick the last item to be the
pivot, 𝑝 = 𝑥[len 𝑥 − 1].

2. Partition the array, so that
it has the form
(items ≤ 𝑝) ∷ 𝑝 ∷ (items ≥ 𝑝)

3. The pivot 𝑝 is now in its
correct place. Call quicksort
on the left portion, and on the
right portion.

def partition(x, p):
 i = just before first item
 j = just before p
 while True:
 while i < j and x[i] <= p: i++
 while i < j and x[j-1] >= p: j--
 if i < j:
 swap x[i] with x[j-1]
 i++, j--
 swap p with x[j] QUESTION

What’s the worst-case running time (Ω)?

FACT. In fact, QuickSort’s best-case running time is Ω(𝑛 log 𝑛).

EXERCISE. The worst-case running time is 𝑂(𝑛2).

FACT. In the input is random (all permutations equally likely)
then the expected running time is Θ(𝑛 log𝑛).

2.9 MergeSort

𝑖1

𝑖2

𝑗

def mergesort(src, dst):
 n = len(src)
 m = int(n/2)

 x1 = new array of length m
 mergesort(src=src[0:m], dst=x1)

 x2 = new array of length n-m
 mergesort(src=src[m:n], dst=x2)

 merge x1 and x2 into dst
 free x1 and x2

 (unless n==1, in which case
 just copy src[0] into dst[0])

2 6 9 3 8 5 11 4 1 7 102 6 9 3 8 5 11 4 1 7 10src

x1

x2

dst

2 6 93 85

1141 7 10

def merge(x1, x2, dst):
 # assert len(dst) == len(x1)+len(x2)
 i1,i2 = 0,0
 for j in 0..(len(dst)-1):
 dst[j] = min(x1[i1], x2[i2])
 advance i1 or i2 appropriately

def mergesort(src, dst):
 n = len(src)
 m = int(n/2)

 x1 = new array of length m
 mergesort(src=src[0:m], dst=x1)

 x2 = new array of length n-m
 mergesort(src=src[m:n], dst=x2)

 merge x1 and x2 into dst
 free x1 and x2

 (unless n==1, in which case
 just copy src[0] into dst[0])

def merge(x1, x2, dst):
 # assert len(dst) == len(x1)+len(x2)
 i1,i2 = 0,0
 for j in 0..(len(dst)-1):
 dst[j] = min(x1[i1], x2[i2])
 advance i1 or i2 appropriately

Assume that the time to create an array of size 𝑚, and to free it, is Θ(𝑚).

Tick 1, deadline 5 Feb at noon

With cunning, we can
implement mergesort using
only ⌊ Τ𝑛 2⌋ extra space.

Can we sort in 𝑂(𝑛 log 𝑛) without using extra memory?

OUR STARTING POINT: SELECTSORT

SelectSort is in-place, and it’s efficient in terms of swaps. But it
uses very many comparisons, because on each pass it re-scans
all remaining items to find the maximum.

Backwards SelectSort

largest, in order
repeatedly
select the
largest of what
remains, and
place it

QUESTION
In each scan we do lots of comparisons, and learn
a lot about the values. How might we save this
information, to reuse in the next scan?

WHAT WE WANT

A data structure that is efficient for repeatedly
extracting the maximum item.

???

largest, in order

2.10 HeapSort

A heap is an almost-full binary tree that satisfies the heap property.
every level except possibly
the bottom is full, and any
spaces in the bottom level
come at the right-hand end

everywhere in the tree,
parent value ≥ child values

F

C E

DB A

F ≥ C and F ≥ E

C ≥ B and C ≥ A

E ≥ D

A heap with 𝑛 items has height ⌈log2 𝑛⌉.

n = 6
log2 n = 2.58..
height = 2

F

C E

DB A

0 1 2 3 4 5 6 7 8 9 10

We’ll use a heap to store the items
that have yet to be placed into the
“sorted” part of the array.

Conveniently, we can use the
array itself to store the heap.

Let the children of 𝑥[𝑖] be
𝑥[2𝑖 + 1] and 𝑥[2𝑖 + 2].

G H I J K

2 6 9 3 8 5 11 4 1 7 10

𝑖

def heapsort(x):
 n = len(x)

 for i in 1..n-1:
 # assert x[0:i] is a heap
 add x[i] to heap and re-heapify

 # assert x[0:n] is a heap

 for i in n..1:
 # assert x[i:n] has largest n-i
 # assert x[0:i] is a heap
 swap x[0] with x[i-1]
 re-heapify x[0:i-1]

0 1 2 3 4 5 6 7 8 9 10

0

1 2

3 4 5 6

7 8 9 10

It’s handy to visualize the data both as an array
and as a tree, simultaneously. But internally
there is just a single array of size 𝑛.

11

2

6

9

3

8

5

11

4

1

7

10

𝑖

def heapsort(x):
 n = len(x)

 for i in 1..n-1:
 # assert x[0:i] is a heap
 add x[i] to heap and re-heapify

 # assert x[0:n] is a heap

 for i in n..1:
 # assert x[i:n] has largest n-i
 # assert x[0:i] is a heap
 swap x[0] with x[i-1]
 re-heapify x[0:i-1]

0 1 2 3 4 5 6 7 8 9 10

0

1 2

3 4 5 6

7 8 9 10

It’s handy to visualize the data both as an array
and as a tree, simultaneously. But internally
there is just a single array of size 𝑛.

Re-heapify by bubbling up from i

j = i

while j > 0 and x[j] > x[parent(j)]:
 swap x[j] with x[parent(j)]
 j = parent(j)

heap ok

heap
violation

heap
violation

11

𝑗

2

6

9

3

8 5

11

4

1 7

10

𝑖

def heapsort(x):
 n = len(x)

 for i in 1..n-1:
 # assert x[0:i] is a heap
 add x[i] to heap and re-heapify

 # assert x[0:n] is a heap

 for i in n..1:
 # assert x[i:n] has largest n-i
 # assert x[0:i] is a heap
 swap x[0] with x[i-1]
 re-heapify x[0:i-1]

0 1 2 3 4 5 6 7 8 9 10

0

1 2

3 4 5 6

7 8 9 10

It’s handy to visualize the data both as an array
and as a tree, simultaneously. But internally
there is just a single array of size 𝑛.

Re-heapify by bubbling up from i

j = i

while j > 0 and x[j] > x[parent(j)]:
 swap x[j] with x[parent(j)]
 j = parent(j)

Re-heapify by bubbling down from 0

j = 0

while x[j] < max(x[child1(j)], x[child2(j)]):
 swap x[j] with larger child
 j = larger child

heap
violation

heap
violation

heap
ok

11

𝑗

def heapsort(x):
 n = len(x)

 for i in 1..n-1:
 # assert x[0:i] is a heap
 add x[i] to heap and re-heapify

 # assert x[0:n] is a heap

 for i in n..1:
 # assert x[i:n] has largest n-i
 # assert x[0:i] is a heap
 swap x[0] with x[i-1]
 re-heapify x[0:i-1]

Faster heap creation

for i in (⌊n/2⌋-1)..0:
 # assert trees rooted at (i+1)..n are heaps

 re-heapify the tree rooted at x[i]
 by bubbling down

2 6 9 3 8 5 11 4 1 7 10

𝑖

0 1 2 3 4 5 6 7 8 9 10

0

1 2

3 4 5 6

7 8 9 10

In fact, we can create the initial heap in 𝑂(𝑛).

11

	Slide 1
	Slide 2: 2.11 Quicksort
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 10: 2.9 MergeSort
	Slide 11
	Slide 12
	Slide 13: Can we sort in cap O open paren n log n close paren without using extra memory?
	Slide 14: 2.10 HeapSort
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19

