ヨloise

by Edmund Leighton, 1852-1922

Last time: the InsertSort algorithm, on an array of length $n$, has running time $\leq 1 / 2 k_{1} n(n-1)+k_{2}(n-1)$.

Let's make life easier by only worrying about asymptotic costs.
Definition. Given two functions $f$ and $g$, both $\mathbb{N} \rightarrow \mathbb{R}$, we say $f(n)$ is $O(g(n))$ if $\exists \kappa>0$ and $n_{0} \in \mathbb{N}$ such that $\forall n \geq n_{0},|f(n)| \leq \kappa|g(n)|$ and we say $f(n)$ is $\Omega(g(n))$ if

$$
\exists \delta>0 \text { and } n_{0} \in \mathbb{N} \text { such that } \forall n \geq n_{0},|f(n)| \geq \delta|g(n)|
$$

If $f(n)$ is $O(g(n))$ and also $\Omega(g(n))$ we say that $f(n)$ is $\Theta(g(n))$.
let $f(n)=\frac{1}{2} k_{1} n(n-1)+k_{2}(n-1) \quad k_{1}, k_{2}$ constrains.
Then $f(n)$ is $O\left(n^{3}\right)$ since $f(n) \leq \frac{1}{2} k_{1} n^{2}+k_{2} n=n^{3}\left(\frac{\frac{1}{2} k_{1}}{n}+\frac{k_{2}}{n^{2}}\right) \leq 2 n^{3}$ for $n \geq \max \left(\frac{1}{2} k_{1}, k_{2}\right)$.
Function $f$ is

But also $f(n)$ is $O\left(n^{2}\right)$ by similar reasoning. And $O\left(e^{n}\right)$. And...
$A\left(\right.$ so, $f(n)$ is $\Omega\left(n^{2}\right)$, and $\Omega(\log n)$, and $\Omega(1) \ldots$. by similar reasoning.

Since $f(n)$ is $O\left(n^{2}\right)$, and $\Omega\left(n^{2}\right)$, ir is $\Theta\left(n^{2}\right)$.


## In this course, we're typically interested in an algorithm's worst-case running time as a function of input size.



$$
\begin{aligned}
& \text { Plot a dot o for every } \\
& \text { possible input } x \text {. } \\
& \text { For each } n \text {, circle } 0 \text { the } \\
& \text { input that's the worst case. }
\end{aligned}
$$

We've shown that for every input $x$ of size $n$, the cost is $\leq \kappa n^{2}$ (for some $\kappa>0$, and sufficiently large $n$ ). In other words, all the blue dots are $\leq \kappa n^{2}$.

In other words, the purple circles are $\leq \kappa n^{2}$.
In other words, if we define the worst-case cost to be $h(n)=\max _{x}$ : $\operatorname{size}(x)=n \operatorname{cost}(x)$, then $h(n)$ is $O\left(n^{2}\right)$.
Can we find a matching $\Omega$ bound, i.e. show that $h(n)$ is $\Omega\left(n^{2}\right)$ ? In other words, can we show that the purple circles are $\geq \delta n^{2}$ (for some $\delta>0$, and sufficiently large $n$ )? In other words, can we find for each $n$ a specific input $x$ whose cost is $\geq \delta n^{2}$ ?

In this course, we're typically interested in an algorithm's worst-case running time as a function of input size.

```
def insert_sort(x):
    for i in 1..(len(x)-1):
        j = i - 1
        while j >= 0 and x[j] > x[j+1]:
        swap x[j] with x[j+1]
        j = j - 1
```


## InsertSort


Q. Given an arbitrary $n$, what is an input of size $n$ that gives the worst possible running time?

For input $[n, n-1, \cdots, 1]$ cost is $\Omega\left(n^{2}\right)$


After we show that our algorithm is $O\left(n^{2}\right)$, it's good manners to also demonstrate that the worst case is $\Omega\left(n^{2}\right)$.

MON
wED Two optimal algorithms
FRI Better than optimal!?
2.5 Minimum cost of sorting

Can we do better than InsertSort's $\Theta\left(n^{2}\right)$ worst-case running time?

Complexity of Comparison Sort?

- typically count the number of comparisons $C(n)$
- there are $n$ ! permutations of $n$ elements
- each comparison eliminates half of the permutations $2^{C(n)} \geq n!$
- therefore $C(n) \geq \log (n!) \approx n \log n-1.44 n$
- The lower bound of comparison is $O(n \log n)$

Properly-stated theorem
Gwen any sorting alg. A
let $g_{A}(x)=$ \#companisors when we sun $A$ on import $x$
let $f_{A}(n)=\max _{x: \operatorname{siz}(x)=n} g_{n}(x)$
Then $f_{A}(n)$ is $\Omega(n \log n)$.

ALERT! We doit expect to see "lower bound" and "O" in the same sentence!

## §2.7 Binary InsertSort

Can we sort using only $O(n \log n)$ comparisons?

```
def insert_sort(x):
    for i in 1..(len(x)-1):
        do a linear search for
        where x[i] should go, and
        insert it there
def binary_insert_sort(x):
    for i in 1..(len(x)-1):
        do a binary search for
        where x[i] should go, and
        insert it there
```



QUESTION
What's a big- $O$ bound on the number of comparisons for BinaryInsertSort?

and means we can only end
up with a $O(\cdot)$ conclusion. So total \#componisons is $O(n \log n)$.

QUESTION
What's the asymptotic worstcase number of swaps?

Recall: sum of avirumetic series.

$$
1+2+\cdots+n=\frac{1}{2} n(n+1)
$$

- To place $x[i]$ we might need $i$ swaps.

$$
\text { Total \# swaps } \leq \sum_{i=1}^{n-1} i
$$

so worst-case total \#swaps is $O\left(n^{2}\right)$

- Thinking of the input $[n, n-1, \cdots, 1]$,

Warst-case notal \#swaps is $\quad \Omega\left(n^{2}\right)$
def binary_insert_sort $(x)$ :
for i in 1...(len(x)-1): do a binary search for where $x[i]$ should go, and insert it there


## §2.6 SelectSort

What's a lower bound for the worst-case number of swaps to sort an array of length $n$ ?
Theorem. For any sorting algorithm, the worst-case number of swaps is $\Omega(n)$.
Proof. Given arbitrary $n$, consider the input $x=[2,3, \ldots, n, 1]$.
Every item starts in the wrong place, so every item needs to be "touched" by a swap.
Each swap touches two items.
Thus \#swaps $\geq\lceil n / 2\rceil$, which is $\Omega(n)$.

Can we sort using only $O(n)$ swaps? "The $k$ that achieves the minimum"

$\begin{array}{|l|c|c|}$\cline { 2 - 3 } \& comparisons \& swaps <br>
\hline any algorithm \& worst case is\(\left.\Omega(n \log n) \& worst case is \Omega(n) <br>
\hline InsertSort \& $$
\begin{array}{l}\text { worst case is } O\left(n^{2}\right) \\
\text { worst case is } \Omega\left(n^{2}\right)\end{array}
$$ \& $$
\begin{array}{l}\text { worst case is } O(n \log n) \\
\text { winarylnsertSort }\end{array}
$$ <br>

\hline welectSort \& worse is O\left(n^{2}\right)\end{array}\right\}\)| worst case is $O(n)$ |
| :--- |



If our bounds don't agree, we should think harder!

- Can we find a better example, one that hits our upper bound?
- Or maybe the algorithm isn't as bad as we thought: can we find a tighter upper bound?

As well as $O$ and $\Omega$ and $\Theta$, we also use $o$ and $\omega$ [see notes]
$O$ is pronounced "big-O" $o$ is pronounced "little-o"
$\Omega$ is pronounced "big-Omega"
$\omega$ is pronounced "little-omega"
literally means bigo!
©

