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Last time: the InsertSort algorithm, on an array of length n, has running time < '/, kyn(n — 1) + k,(n — 1).

Let’s make life easier by only worrying about asymptotic costs.

Definition. Given two functions f and g, both N - R, we say f(n) is O(g(n)) if
dk > 0 andny € N such that Vn = n,, |[f(n)| < k|g(n)]

and we say f(n) is Q(g(n)) if
36 > 0 and ny € N such that Vn = ng, |f(n)| = 6lg(n)|.

If f(n)is0(g(n))andalso Q(g(n)) we say that f(n) is @(g(n)).
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In this course, we're typically interested in an algorithm’s
worst-case running time as a function of input size.
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We’ve shown that for every input x of size n, the cost is < kn? (for some k > 0, and sufficiently large n).
In other words, all the blue dots are < kn?.

In other words, the purple circles are < kn?.
In other words, if we define the worst-case cost to be h(n) = max,. size(x)=n €OSt(x), then h(n) is 0(n?).

Can we find a matching Q bound, i.e. show that h(n) is Q(n?)?
In other words, can we show that the purple circles are = én? (for some § > 0, and sufficiently large n)?
In other words, can we find for each n a specific input x whose cost is > 6n??



In this course, we’re typically interested in an algorithm’s
worst-case running time as a function of input size.

def insert_sort(x): InsertSort 5
for i in 1..(Qen(x)-1): repeatedly, take an |
. . item and insert it |
j=1-1 J’\nto the right place i
while j >= 0 and x[j]1 > x[j+11:
swap x[j] with x[j+1] .‘l\ l‘\l. |
j=13-1 gettosort
Q. Given an arbitrary n, what is an Fon Sepat [, 0=l oo \1
input of size n that gives the worst cHt S J)_@ >

possible running time?

ChatGPT struggles with 3 problemes.
For example, see the “vulnerability report” at https://hackerone.com/reports/2298307
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There is some k > 0 for which
V sufficiently large n and

V problems of size n

cost < Kk n?

There is some 6 > 0 for which
V sufficiently large n,
3 a problem of size n with

After we show that our algorithm is 0(n?),
it’s good manners to also demonstrate that
the worst case is (.(n?).



MON  Simple sorting algorithms compared
WED  Two optimal algorithms

FRI Better than optimal!?



2.5 Minimum cost of sorting

Complexity of
Comparison Sort?

typically count the number of comparisons C(n)

there are n! permutations of n elements

* each comparison eliminates half of the permutations
200 > !

therefore C(n) > log(n!) ~ nlogn — 1.44n

Theé lower bound ofjcomparison ig O(n log n)
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Can we do better than InsertSort’s ©(n?) worst-case running time?
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§2.7 Binary InsertSort

Can we sort using only O(n logn) comparisons?

x[0:1] sorted

A

x[i:n] remaining

A

def insert_sort(x):
for i in 1..(len(x)-1):
do a linear search for

where x[i] should go, and L e
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insert it there

def binary_insert_sort(x):
for i in 1..(len(x)-1):
do a binary search for
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where x[i] should go, and
insert it there




QUESTION 4 compnisong o (e =[] @ {T (f*ﬂ
What’s a big-O bound on the P 2
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BinarylnsertSort? n-)
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def binary_insert_sort(x):
for i in 1..(len(x)-1):
do a binary search for

where x[i] should gos and é;’ ; -L
insert it there V\\(T— 7
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QUESTION
What’s the asymptotic worst- \

case number of swaps? Total #ouops £ Z :
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def binary_insert_sort(x):
for i in 1..(len(x)-1):
do a binary search for co 0 10,0, AR Nnar \‘ 10 o\ |

where x[i] should go, and

insert it there '\\(T— Rl ‘



§2.6 SelectSort
What'’s a lower bound for the worst-case number of swaps to sort an array of length n?

Theorem. For any sorting algorithm, the worst-case number of swaps is (2(n).

Proof. Given arbitrary 1, consider the input x = [2,3, ..., n, 1].

Every item starts in the wrong place, so every item needs to be “touched” by a swap.
Each swap touches two items.

Thus #swaps = [n/2], which is Q(n).
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QUESTION 2 . 2

What’s the asymptotic worst- . A Z(M;- ) = @(nz)
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any algorithm

InsertSort

BinarylnsertSort

SelectSort

comparisons

worst case is Q(nlogn)

worst case is 0(n?)
worst case is Q(n?)

worst case is O(nlogn)

every case is O(n?)

swaps

worst case is (1)

worst case is 0(n?)
worst case is Q(n?)

worst case is 0(n)
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Here is a universal argument
about the worst that can happen.

Here is a concrete example inpu ;o BN It demonstrates an upper bound
It demonstrates a lower boundon & | on running time.
worst-case running time.

If our bounds don’t agree, we should think harder!
= Can we find a better example, one that hits our upper bound?
= Or maybe the algorithm isn’t as bad as we thought: can we find a tighter upper bound?



As well as O and 2 and ®, we also use 0 and w [sce notes]
O is pronounced “big-O”
o is pronounced “little-0”
Q) is pronounced “big-Omega”
w is pronounced “little-omega,
l
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