
∀belard
∃loise

by Edmund Leighton, 1852—1922

Let’s make life easier by only worrying about asymptotic costs.
Definition. Given two functions 𝑓 and 𝑔, both ℕ → ℝ, we say 𝑓(𝑛) is 𝑂(𝑔 𝑛) if

∃𝜅 > 0 and 𝑛0 ∈ ℕ such that ∀𝑛 ≥ 𝑛0, 𝑓 𝑛 ≤ 𝜅 𝑔 𝑛

and we say 𝑓(𝑛) is Ω(𝑔 𝑛) if
∃𝛿 > 0 and 𝑛0 ∈ ℕ such that ∀𝑛 ≥ 𝑛0, 𝑓 𝑛 ≥ 𝛿 𝑔 𝑛 .

If 𝑓(𝑛) is 𝑂(𝑔 𝑛) and also Ω(𝑔 𝑛) we say that 𝑓 𝑛 is Θ(𝑔 𝑛).

Last time: the InsertSort algorithm, on an array of length 𝑛, has running time ≤ Τ1
2 𝑘1𝑛 𝑛 − 1 + 𝑘2(𝑛 − 1).

In this course, we’re typically interested in an algorithm’s
worst-case running time as a function of input size.

We’ve shown that for every input 𝑥 of size 𝑛, the cost is ≤ 𝜅𝑛2 (for some 𝜅 > 0, and sufficiently large 𝑛).
In other words, all the blue dots are ≤ 𝜅𝑛2.

In other words, the purple circles are ≤ 𝜅𝑛2.
In other words, if we define the worst-case cost to be ℎ 𝑛 = max𝑥∶ size 𝑥 =𝑛 cost(𝑥), then ℎ(𝑛) is 𝑂(𝑛2).

Can we find a matching Ω bound, i.e. show that ℎ(𝑛) is Ω(𝑛2)?
In other words, can we show that the purple circles are ≥ 𝛿𝑛2 (for some 𝛿 > 0, and sufficiently large 𝑛)?
In other words, can we find for each 𝑛 a specific input 𝑥 whose cost is ≥ 𝛿𝑛2?

1

2

4

5

6

7

def insert_sort(x):
for i in 1..(len(x)-1):
j = i – 1
while j >= 0 and x[j] > x[j+1]:

swap x[j] with x[j+1]
j = j – 1

Q. Given an arbitrary 𝑛, what is an
input of size 𝑛 that gives the worst
possible running time?

ChatGPT struggles with ∃ problems.
For example, see the “vulnerability report” at https://hackerone.com/reports/2298307

InsertSort

yet to sort

repeatedly, take an
item and insert it
into the right place

In this course, we’re typically interested in an algorithm’s
worst-case running time as a function of input size.

After we show that our algorithm is 𝑂(𝑛2),
it’s good manners to also demonstrate that
the worst case is Ω(𝑛2).

There is some 𝛿 > 0 for which
∀ sufficiently large 𝑛,
∃ a problem of size 𝑛 with

cost ≥ 𝛿 𝑛2

There is some 𝜅 > 0 for which
∀ sufficiently large 𝑛 and
∀ problems of size 𝑛

cost ≤ 𝜅 𝑛2

∀belard∃louise

MON Simple sorting algorithms compared

WED Two optimal algorithms

FRI Better than optimal!?

2.5 Minimum cost of sorting
Can we do better than InsertSort’s Θ(𝑛2) worst-case running time?

§2.7 Binary InsertSort
Can we sort using only 𝑂(𝑛 log 𝑛) comparisons?

x[0:i] sorted x[i:n] remaining

ij

def insert_sort(x):
 for i in 1..(len(x)-1):
 do a linear search for
 where x[i] should go, and
 insert it there

ij

def binary_insert_sort(x):
 for i in 1..(len(x)-1):
 do a binary search for
 where x[i] should go, and
 insert it there

ij

QUESTION
What’s a big-𝑂 bound on the
number of comparisons for
BinaryInsertSort?

def binary_insert_sort(x):
 for i in 1..(len(x)-1):
 do a binary search for
 where x[i] should go, and
 insert it there

ij

QUESTION
What’s the asymptotic worst-
case number of swaps?

def binary_insert_sort(x):
 for i in 1..(len(x)-1):
 do a binary search for
 where x[i] should go, and
 insert it there

§2.6 SelectSort
What’s a lower bound for the worst-case number of swaps to sort an array of length 𝑛?

Theorem. For any sorting algorithm, the worst-case number of swaps is 𝛺(𝑛).
Proof. Given arbitrary 𝑛, consider the input 𝑥 = [2,3, … , 𝑛, 1].
Every item starts in the wrong place, so every item needs to be “touched” by a swap.
Each swap touches two items.
Thus #swaps ≥ ⌈ Τ𝑛 2⌉, which is Ω(𝑛).

def select_sort(x):
 for i in 0..(len(x)-2):
 # Find what belongs in x[i]
 j = arg min

𝑖≤𝑘<len(𝑥)
x[k]

 swap x[i] with x[j]

i j

? ? ? ? ? ?

x[0:i] consists of the i
smallest items, in order

Can we sort using only 𝑂(𝑛) swaps?

QUESTION
What’s the asymptotic worst-
case number of comparisons?

comparisons swaps

any algorithm worst case is Ω(𝑛 log 𝑛) worst case is Ω(𝑛)

InsertSort
worst case is 𝑂(𝑛2)
worst case is Ω(𝑛2) worst case is 𝑂(𝑛2)

worst case is Ω(𝑛2)
BinaryInsertSort worst case is 𝑂(𝑛 log 𝑛)

SelectSort every case is Θ(𝑛2) worst case is 𝑂(𝑛)

Here is a concrete example input.

It demonstrates a lower bound on
worst-case running time.

Here is a universal argument
about the worst that can happen.

It demonstrates an upper bound
on running time.

∀belard∃louise

If our bounds don’t agree, we should think harder!

▪ Can we find a better example, one that hits our upper bound?

▪ Or maybe the algorithm isn’t as bad as we thought: can we find a tighter upper bound?

As well as 𝑂 and Ω and Θ, we also use 𝑜 and 𝜔 [see notes]

𝑂 is pronounced “big-O”
𝑜 is pronounced “little-o”
Ω is pronounced “big-Omega”
𝜔 is pronounced “little-omega”

	Slide 1
	Slide 2: Let’s make life easier by only worrying about asymptotic costs.
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7: 2.5 Minimum cost of sorting
	Slide 8: §2.7 Binary InsertSort
	Slide 9
	Slide 10
	Slide 11: §2.6 SelectSort
	Slide 12
	Slide 13
	Slide 14

