

∀belard

by Edmund Leighton, 1852-1922

Last time: the InsertSort algorithm, on an array of length n, has running time $\leq \frac{1}{2}k_1n(n-1) + k_2(n-1)$.

Let's make life easier by only worrying about asymptotic costs.

Function f is

15% Off

Definition. Given two functions f and g, both $\mathbb{N} \to \mathbb{R}$, we say f(n) is O(g(n)) if $\exists \kappa > 0$ and $n_0 \in \mathbb{N}$ such that $\forall n \ge n_0, |f(n)| \le \kappa |g(n)|$

and we say f(n) is $\Omega(g(n))$ if

 $\exists \delta > 0 \text{ and } n_0 \in \mathbb{N} \text{ such that } \forall n \ge n_0, |f(n)| \ge \delta |g(n)|.$ If f(n) is O(g(n)) and also $\Omega(g(n))$ we say that f(n) is $\Theta(g(n))$.

let $f(n) = \frac{1}{2}k_1 n(n-1) + k_2(n-1) \quad p_{11} k_2 constraints.$ Then f(n) is $O(n^3)$ since $f(n) = \frac{1}{2}k_1 n^2 + k_2 n = n^3 \left(\frac{\frac{1}{2}k_1}{n} + \frac{k_2}{n^2}\right) = 2n^3$ for $n = max(\frac{1}{2}k_1, k_2)$. But also f(n) is $O(n^2)$ by similar reasoning. And $O(e^n)$. And \dots Also, f(n) is $\mathcal{N}(n^2)$, and $\mathcal{N}(logn)$, and $\mathcal{N}(l)$. by similar reasoning. Since f(n) is $O(n^2)$, and $\mathcal{N}(n^2)$, it is $\mathfrak{O}(n^2)$. In this course, we're typically interested in an algorithm's worst-case running time as a function of input size.

Plot a dot · for every possible input x.

For each n, circle O the input that's the worst cark.

We've shown that for every input x of size n, the cost is $\leq \kappa n^2$ (for some $\kappa > 0$, and sufficiently large n). In other words, all the blue dots are $\leq \kappa n^2$.

In other words, the purple circles are $\leq \kappa n^2$.

In other words, if we define the worst-case cost to be $h(n) = \max_{x: \text{size}(x)=n} \operatorname{cost}(x)$, then h(n) is $O(n^2)$.

Can we find a matching Ω bound, i.e. show that h(n) is $\Omega(n^2)$? In other words, can we show that the purple circles are $\geq \delta n^2$ (for some $\delta > 0$, and sufficiently large n)? In other words, can we find for each n a specific input x whose cost is $\geq \delta n^2$? In this course, we're typically interested in an algorithm's worst-case running time as a function of input size.

Q. Given an arbitrary *n*, what is an input of size *n* that gives the worst possible running time?

For imput $[n, n-1, \dots, 1]$ (35t is $\Omega(n^2)$

ChatGPT struggles with \exists problems. For example, see the "vulnerability report" at https://hackerone.com/reports/2298307

∀belard

∃louise

After we show that our algorithm is $O(n^2)$, it's good manners to also demonstrate that the worst case is $\Omega(n^2)$.

MON Simple sorting algorithms compared

WED **Two optimal algorithms**

FRI Better than optimal!?

2.5 Minimum cost of sorting

Can we do better than InsertSort's $\Theta(n^2)$ worst-case running time?

Complexity of Comparison Sort?

- typically count the number of comparisons C(n)
- there are *n*! permutations of *n* elements
- each comparison eliminates *half* of the permutations $2^{C(n)} \ge n!$
- therefore $C(n) \ge \log(n!) \approx n \log n 1.44n$
- The lower bound of comparison is $O(n \log n)$

ALERT! We don't expect to see "(over bound" and "O" in the same southence! Properly-stated theorem Given any sorting alg. A let $g_A(x) = \#companisons$ when we win A on import xlet $f_A(n) = \max_{x:siz(x)=n} g_A(x)$ x:siz(x)=nThen $f_A(n)$ is $S_2(n \log n)$.

§2.7 Binary InsertSort

Can we sort using only $O(n \log n)$ comparisons?

QUESTION What's the asymptotic worstcase number of swaps?

Recall: sum of a with metric series. $1 + 2 + \cdots + n = \frac{1}{2}n(n+1)$

def binary_insert_sort(x):
for i in 1..(len(x)-1):
 do a binary search for
 where x[i] should go, and
 insert it there

§2.6 SelectSort

What's a lower bound for the worst-case number of swaps to sort an array of length *n*?

Theorem. For any sorting algorithm, the worst-case number of swaps is $\Omega(n)$. Proof. Given arbitrary n, consider the input x = [2,3, ..., n, 1]. Every item starts in the wrong place, so every item needs to be "touched" by a swap. Each swap touches two items.

Thus #swaps $\geq [n/2]$, which is $\Omega(n)$.

	comparisons	swaps
any algorithm	worst case is $\Omega(n \log n)$	worst case is $\Omega(n)$
InsertSort	worst case is $O(n^2)$ worst case is $\Omega(n^2)$	worst case is $O(n^2)$ worst case is $\Omega(n^2)$
BinaryInsertSort	worst case is $O(n \log n)$	
SelectSort	every case is $\Theta(n^2)$	worst case is $O(n)$

Here is a concrete example input. It demonstrates a lower bound on worst-case running time. Here is a universal argument about the worst that can happen. It demonstrates an upper bound on running time.

If our bounds don't agree, we should think harder!

• Can we find a better example, one that hits our upper bound?

∃louise

∀belard

Or maybe the algorithm isn't as bad as we thought: can we find a tighter upper bound?

