Category Theory
Lecture 13
Exercise SheetS is now available

- Solution notes for Ex.Sh. 4 on Moodle after evengone has submitted.
- I aim to provide feedback on performance in the graded Ex.Sh. 4 within a week. $\stackrel{\iota}{4}$

Recall:

 an adjunction $F \dashv G$ is specified by functions

$$
\theta_{X, Y} \xlongequal[{X \xrightarrow{\bar{g}} G} Y]{F X \xrightarrow{g} Y} \quad \uparrow_{\theta_{x, x}^{-1},} \xlongequal[{X \xrightarrow{F X}} Y]{\stackrel{\bar{f}}{\rightarrow} G Y}
$$

(for each $X \in \mathrm{C}$ and $Y \in \mathrm{D}$) satisfying $\overline{\bar{f}}=f, \overline{\bar{g}}=g$ and

$$
\xlongequal[{X^{\prime} \xrightarrow{u} X \xrightarrow{\bar{g}} G} Y]{F X^{\prime} F}
$$

$$
\frac{F X \xrightarrow{g} Y \xrightarrow{v} Y^{\prime}}{X \xrightarrow{\bar{g}} G Y \xrightarrow{G v} G Y^{\prime}}
$$

Theorem. A category C has binary products of the diagonal functor $\Delta=\left\langle\mathrm{id}_{\mathrm{C}}, \mathrm{id}_{C}\right\rangle: \mathrm{C} \rightarrow \mathrm{C} \times \mathrm{C}$ has a right adjoint.

Theorem. A category C with binary products also has all exponential of pairs of objects iff for all $X \in \mathrm{C}$, the functor $\left(__{-}\right) \times X: \mathrm{C} \rightarrow \mathrm{C}$ has a right adjoint.

Common situation: We are given $F: \mathbb{C} \rightarrow \mathbb{D}$ and want to know whether if has a right adjoint $G: \mathbb{D} \rightarrow \mathbb{C}$
What's the least info we need to specify the existence of a right adjoint?

Theorem. A category C has binary products iff the diagonal functor $\Delta=\left\langle\mathrm{id}_{\mathrm{C}}, \mathrm{id}_{C}\right\rangle: \mathrm{C} \rightarrow \mathrm{C} \times \mathrm{C}$ has a right adjoint.

Theorem. A category C with binary products also has all exponentials of pairs of objects iff for all $X \in \mathrm{C}$, the functor $\left({ }_{-}\right) \times X: \mathrm{C} \rightarrow \mathrm{C}$ has a right adjoint.

Both these theorems are instances of the following theorem, a very useful characterisation of when a functor has a right adjoint (or dually, a left adjoint).

Characterisation of right adjoints

Theorem. A functor $F: \mathrm{C} \rightarrow \mathrm{D}$ has a right adjoint iff for all D-objects $Y \in \mathrm{D}$, there is a C -object $G Y \in \mathrm{C}$ and a D-morphism $\varepsilon_{Y}: F(G Y) \rightarrow Y$ with the following "universal property":
for all $X \in \mathbf{C}$ and $g \in \mathbf{D}(F X, Y)$
(UP) there is a unique $\bar{g} \in \mathrm{C}(X, G Y)$
satisfying $\varepsilon_{Y} \circ F(\bar{g})=g$

Characterisation of right adjoints

Theorem. A functor $F: \mathrm{C} \rightarrow \mathrm{D}$ has a right adjoint iff for all D-objects $Y \in \mathrm{D}$, there is a C -object $G Y \in \mathrm{C}$ and a D-morphism $\varepsilon_{Y}: F(G Y) \rightarrow Y$ with the following "universal property":

(UP) | for all $X \in \mathrm{C}$ and $g \in \mathrm{D}(F X, Y)$ |
| :--- |
| there is a unique $\bar{g} \in \mathrm{C}(X, G Y)$ |
| satisfying $\varepsilon_{Y} \circ F(\bar{g})=g$ |

Characterisation of right adjoints

Theorem. A functor $F: \mathrm{C} \rightarrow \mathrm{D}$ has a right adjoint iff for all D-objects $Y \in \mathrm{D}$, there is a C -object $G Y \in \mathrm{C}$ and a D-morphism $\varepsilon_{Y}: F(G Y) \rightarrow Y$ with the following "universal property":

(UP) | for all $X \in \mathrm{C}$ and $g \in \mathrm{D}(F X, Y)$ |
| :--- |
| there is a unique $\bar{g} \in \mathrm{C}(X, G Y)$ |
| satisfying $\varepsilon_{Y} \circ F(\bar{g})=g$ |

Characterisation of right adjoints

Theorem. A functor $F: \mathrm{C} \rightarrow \mathrm{D}$ has a right adjoint iff for all D-objects $Y \in \mathrm{D}$, there is a C -object $G Y \in \mathrm{C}$ and a D-morphism $\varepsilon_{Y}: F(G Y) \rightarrow Y$ with the following "universal property":

(UP) | for all $X \in \mathrm{C}$ and $g \in \mathrm{D}(F X, Y)$ |
| :--- |
| there is a unique $\bar{g} \in \mathrm{C}(X, G Y)$ |
| satisfying $\varepsilon_{Y} \circ F(\bar{g})=g$ |

Proof of the Theorem-"only if" part:

Given an adjunction (F, G, θ), for each $Y \in \mathbf{D}$ we produce $\varepsilon_{Y}: F(G Y) \rightarrow Y$ in \mathbf{D} satisfying (UP).

Proof of the Theorem-"only if" part:

Given an adjunction (F, G, θ), for each $Y \in \mathrm{D}$ we produce $\varepsilon_{Y}: F(G Y) \rightarrow Y$ in \mathbf{D} satisfying (UP).

We are given $\theta_{X, Y}: \mathbf{D}(F X, Y) \cong \mathbf{C}(X, G Y)$, natural in X and Y. Define

$$
\varepsilon_{Y} \triangleq \theta_{G Y, Y}^{-1}\left(\mathrm{id}_{G Y}\right): F(G Y) \rightarrow Y
$$

In other words $\varepsilon_{Y}=\overline{i d_{G Y}}$.

Proof of the Theorem-"only if" part:

Given an adjunction (F, G, θ), for each $Y \in \mathrm{D}$ we produce $\varepsilon_{Y}: F(G Y) \rightarrow Y$ in \mathbf{D} satisfying (UP).
We are given $\theta_{X, Y}: \mathbf{D}(F X, Y) \cong \mathbf{C}(X, G Y)$, natural in X and Y. Define

$$
\varepsilon_{Y} \triangleq \theta_{G Y, Y}^{-1}\left(\mathrm{id}_{G Y}\right): F(G Y) \rightarrow Y
$$

In other words $\varepsilon_{Y}=\overline{i d_{G Y}}$.
Given any $\left\{\begin{array}{ll}g: F X \rightarrow Y & \text { in } \mathrm{D} \\ f: X \rightarrow G Y & \text { in } C\end{array}\right.$, by naturality of θ we have

$$
\frac{F X \xrightarrow{g} Y}{X \xrightarrow{\bar{g}} G Y} \text { and } \xlongequal[{f: X \xrightarrow{\varepsilon_{Y} \circ F f: F X \xrightarrow{F f} F(G Y) \xrightarrow{\overline{\mathrm{id}_{G} Y}} Y} \text { } G} Y]{\text { id }{ }_{G}}
$$

Hence $g=\varepsilon_{Y} \circ F \bar{g}$ and $g=\varepsilon_{Y} \circ F f \Rightarrow \bar{g}=f$.
Thus we do indeed have (UP).

Proof of the Theorem-"if" part:

We are given $F: \mathbf{C} \rightarrow \mathbf{D}$ and for each $Y \in \mathbf{D}$ a \mathbf{C}-object $G Y$ and \mathbf{C}-morphism $\varepsilon_{Y}: F(G Y) \rightarrow Y$ satisfying (UP). We have to

1. extend $Y \mapsto G Y$ to a functor $G: \mathrm{D} \rightarrow \mathrm{C}$
2. construct a natural isomorphism $\theta: \operatorname{Hom}_{\mathrm{D}} \circ\left(F^{\mathrm{op}} \times \mathrm{id}_{\mathrm{D}}\right) \cong \operatorname{Hom}_{\mathrm{C}} \circ\left(\mathrm{id}_{\mathrm{Cop}} \times G\right)$

Proof of the Theorem-"if" part:

We are given $F: \mathbf{C} \rightarrow \mathbf{D}$ and for each $Y \in \mathbf{D}$ a \mathbf{C}-object $G Y$ and \mathbf{C}-morphism $\varepsilon_{Y}: F(G Y) \rightarrow Y$ satisfying (UP). We have to

1. extend $Y \mapsto G Y$ to a functor $G: \mathrm{D} \rightarrow \mathrm{C}$

For each D-morphism $g: Y^{\prime} \rightarrow Y$ we get $F\left(G Y^{\prime}\right) \xrightarrow{\varepsilon_{Y^{\prime}}} Y^{\prime} \xrightarrow{g} Y$ and can apply (UP) to get

$$
G g \triangleq \overline{g \circ \varepsilon_{Y^{\prime}}}: G Y^{\prime} \rightarrow G Y
$$

The uniqueness part of (UP) implies

$$
G i d=i d \quad \text { and } \quad G\left(g^{\prime} \circ g\right)=G g^{\prime} \circ G g
$$

so that we get a functor $G: \mathrm{D} \rightarrow \mathrm{C}$.

Proof of the Theorem-"if" part:

We are given $F: \mathbf{C} \rightarrow \mathbf{D}$ and for each $Y \in \mathbf{D}$ a \mathbf{C}-object $G Y$ and \mathbf{C}-morphism $\varepsilon_{Y}: F(G Y) \rightarrow Y$ satisfying (UP). We have to
2. construct a natural isomorphism $\theta: \operatorname{Hom}_{\mathrm{D}} \circ\left(F^{\circ \mathrm{p}} \times \mathrm{id}_{\mathrm{D}}\right) \cong \operatorname{Hom}_{\mathrm{C}} \circ\left(\mathrm{id}_{\mathrm{Cop}} \times G\right)$

Since for all $g: F X \rightarrow Y$ there is a unique $f: X \rightarrow G Y$ with $g=\varepsilon_{Y} \circ F f$,

$$
f \mapsto \bar{f} \triangleq \varepsilon_{Y} \circ F f
$$

determines a bijection $\mathrm{C}(X, G Y) \cong \mathrm{C}(F X, Y)$; and it is natural in $X \& Y$ because

$$
\begin{aligned}
\overline{G v \circ f \circ u} & \triangleq \varepsilon_{Y^{\prime}} \circ F(G v \circ f \circ u) & & \\
& =\left(\varepsilon_{Y^{\prime}} \circ F(G v)\right) \circ F f \circ F u & & \text { since } F \text { is a functor } \\
& =\left(v \circ \varepsilon_{Y}\right) \circ F f \circ F u & & \text { by definition of } G v \\
& =v \circ \bar{f} \circ F u & & \text { by definition of } \bar{f}
\end{aligned}
$$

So we can take θ to be the inverse of this natural isomorphism.

Dual of the Theorem:

$G: \mathrm{C} \leftarrow \mathrm{D}$ has a left adjoint iff for all $X \in \mathrm{C}$ there are $F X \in \mathrm{D}$ and $\eta_{X} \in \mathrm{C}(X, G(F X))$ with the universal property:

$$
\begin{aligned}
& \text { for all } Y \in \mathrm{D} \text { and } f \in \mathrm{C}(X, G Y) \\
& \text { there is a unique } \bar{f} \in \mathrm{D}(F X, Y) \\
& \text { satisfying } G \bar{f} \circ \eta_{X}=f
\end{aligned}
$$

Dual of the Theorem:

$G: \mathrm{C} \leftarrow \mathrm{D}$ has a left adjoint iff for all $X \in \mathrm{C}$ there are $F X \in \mathrm{D}$ and $\eta_{X} \in \mathrm{C}(X, G(F X))$ with the universal property:

$$
\begin{aligned}
& \text { for all } Y \in \mathrm{D} \text { and } \bar{f} \in \mathrm{C}(X, G Y) \\
& \text { there is a unique } \bar{f} \in \mathrm{D}(F X, Y) \\
& \text { satisfying } G \bar{f} \circ \eta_{X}=f
\end{aligned}
$$

E.g. we can conclude that the forgetful functor U : Mon \rightarrow Set has a left adjoint $F:$ Set \rightarrow Mon, because of the universal property of

$$
F \Sigma \triangleq(\text { List } \Sigma, @, \text { nil }) \quad \text { and } \quad \eta_{\Sigma}: \Sigma \rightarrow \text { List } \Sigma
$$

noted in Lecture 3.

Why are adjoint functors important/useful?

Their universal property (UP) usually embodies some useful mathematical construction
(e.g. "freely generated structures are left adjoints for forgetting-stucture") and pins it down uniquely up to isomorphism.

