Lecture 12

Adjoint functors

The concepts of "category", "functor" and "natural transformation" were invented by Eilenberg and MacLane in order to formalise "adjoint situations".

They appear everywhere in mathematics, logic and (hence) computer science.

Examples of adjoint situations that we have already seen...

$$
\underset{\text { Set }}{\text { Given }} \xrightarrow{n_{\Sigma}^{L}} \operatorname{List}(\Sigma)[\text { conoid }(\text { list } \Sigma, a, \text { nil })
$$

Given

Given

Free monoids

The bijection is "natural in Σ and (M, \cdot, e) " (to be explained)

Binary product in a category C

Exponentials in a category C with binary products

Adjunction

Definition. An adjunction between two categories C and D is specified by:

- functors $\mathrm{C} \underset{G}{\stackrel{F}{\leftrightarrows}} \mathrm{D}$
- for each $X \in \mathrm{C}$ and $Y \in \mathrm{D}$ a bijection $\theta_{X, Y}: \mathbf{D}(F X, Y) \cong \mathbf{C}(X, G Y)$ which is natural in X and Y.

$$
\begin{gathered}
\text { for all }\left\{\begin{array}{l}
u: X^{\prime} \rightarrow X \text { in } \mathrm{C} \\
v: Y \rightarrow Y^{\prime} \text { in } \mathrm{D}
\end{array} \quad \text { and all } g: F X \rightarrow Y \text { in } \mathbf{D}\right. \\
X^{\prime} \xrightarrow{u} X \xrightarrow{\theta_{X, Y}(g)} G Y \xrightarrow{G v} G Y^{\prime}=\theta_{X^{\prime}, Y^{\prime}}\left(F X^{\prime} \xrightarrow{F u} F X \xrightarrow{g} Y \xrightarrow{v} Y^{\prime}\right)
\end{gathered}
$$

Adjunction

Definition. An adjunction between two categories C and D is specified by:

- functors $\mathrm{C} \underset{G}{\stackrel{F}{\leftrightarrows}} \mathrm{D}$
- for each $X \in \mathrm{C}$ and $Y \in \mathrm{D}$ a bijection
$\theta_{X, Y}: \mathbf{D}(F X, Y) \cong \mathbf{C}(X, G Y)$ which is natural in X and Y.

> what has this to do with the concept of natural transformation between functors?

Hom functors

If C is a locally small category, then we get a functor

$$
\operatorname{Hom}_{\mathrm{C}}: \mathrm{C}^{\mathrm{op}} \times \mathrm{C} \rightarrow \text { Set }
$$

with $\operatorname{Hom}_{C}(X, Y) \triangleq \mathrm{C}(X, Y)$ and

$$
\begin{aligned}
\operatorname{Hom}_{\mathrm{C}}\left((X, Y) \xrightarrow{(f, g)}\left(X^{\prime}, Y^{\prime}\right)\right) & \triangleq \mathrm{C}(X, Y) \xrightarrow{\operatorname{Hom}_{C}(f, g)} \mathrm{C}\left(X^{\prime}, Y^{\prime}\right) \\
\operatorname{Hom}_{C}(f, g) h & \triangleq g \circ h \circ f
\end{aligned}
$$

Hom functors

If C is a locally small category, then we get a functor

$$
\mathrm{Hom}_{\mathrm{C}}: \mathrm{C}^{\mathrm{op}} \times \mathrm{C} \rightarrow \mathrm{Set}
$$

with $\operatorname{Hom}_{C}(X, Y) \triangleq \mathrm{C}(X, Y)$ and

Natural isomorphisms

Given functors $F, G: \mathbf{C} \rightarrow \mathbf{D}$, a natural isomorphism $\theta: F \cong G$ is simply an isomorphism between F and G in the functor category D^{C}.

Natural isomorphisms

Given functors $F, G: \mathrm{C} \rightarrow \mathrm{D}$, a natural isomorphism $\theta: F \cong G$ is simply an isomorphism between F and G in the functor category D^{C}.

Lemma. If $\theta: F \rightarrow G$ is a natural transformation and for each $X \in \mathrm{C}$, $\theta_{X}: F X \rightarrow G X$ is an isomorphism in D , then the family of morphisms $\left(\theta_{X}^{-1}: G X \rightarrow F X \mid X \in \mathrm{C}\right.$) gives a natural transformation $\theta^{-1}: G \rightarrow F$ which is inverse to θ in D^{C} and hence θ is a natural isomorphism.

An adjunction between locally small categories C and D is simply a triple (F, G, θ) where
$-\mathrm{C} \underset{G}{\stackrel{F}{\rightleftarrows}} \mathrm{D}$

- θ is a natural isomorphism between the functors

Terminology:

Given $C \underset{G}{\underset{~}{\underset{\sim}{2}} D} D$
is there is some natural isomorphism
$\theta: \operatorname{Hom}_{\mathrm{D}} \circ\left(F^{\circ \mathrm{p}} \times \mathrm{id}_{\mathrm{D}}\right) \cong \operatorname{Hom}_{\mathrm{C}} \circ\left(\mathrm{id}_{\mathrm{C} \circ \mathrm{p}} \times G\right)$
one says
F is a left adjoint for G
G is a right adjoint for F
and writes

$$
F \dashv G
$$

Notation associated with an adjunction (F, G, θ)
Given $\left\{\begin{array}{l}g: F X \rightarrow Y \\ f: X \rightarrow G Y\end{array}\right.$
we write $\begin{cases}\bar{g} & \triangleq \theta_{X, Y}(g): X \rightarrow G Y \\ \bar{f} & \triangleq \theta_{X, Y}^{-1}(f): F X \rightarrow Y\end{cases}$
Thus $\overline{\bar{g}}=g, \overline{\bar{f}}=f$ and naturality of $\theta_{X, Y}$ in X and Y means that

$$
\overline{v \circ g \circ F u}=G v \circ \bar{g} \circ u
$$

Notation associated with an adjunction (F, G, θ)
The existence of θ is sometimes indicated by writing

$$
\frac{F X \xrightarrow{g} Y}{X \xrightarrow{\bar{g}} G Y}
$$

Using this notation, one can split the naturality condition for θ into two:

$$
\xlongequal[{X^{\prime} \xrightarrow{u} X \xrightarrow{\bar{g}} G} Y]{\stackrel{F u}{\rightarrow} Y} \quad \xlongequal{F \xrightarrow{\bar{g}} G Y \xrightarrow{G v} G Y^{\prime}}
$$

Theorem. A category C has binary products of the diagonal functor $\Delta=\left\langle\mathrm{id}_{\mathrm{C}}, \mathrm{id}_{C}\right\rangle: \mathrm{C} \rightarrow \mathrm{C} \times \mathrm{C}$ has a right adjoint.

Theorem. A category C with binary products also has all exponential of pairs of objects iff for all $X \in \mathrm{C}$, the functor (-) $\times X: \mathrm{C} \rightarrow \mathrm{C}$ has a right adjoint.
well see next time a theorem characterising adjoint functor of which the above are special cases

