Category Theory
Lecture 4

- Solution notes for Ex. Sheet 1 on Moore
- Ex. Sheet 2 on web page \& Moodle
- Use the Discussion forum on Noodle if you have questions
" (or email amplz © cam)

Binary products

In a category C , a product for objects $X, Y \in \mathrm{C}$ is a diagram $X \stackrel{\pi_{1}}{\leftarrow} P \xrightarrow{\pi_{2}} Y$ with the universal property:
For all $X \stackrel{f}{\leftarrow} Z \xrightarrow{g} Y$ in C, there is a unique C-morphism $h: Z \rightarrow P$ such that the following diagram commutes in C:

Binary products

In a category C , a product for objects $X, Y \in \mathrm{C}$ is a diagram $X \stackrel{\pi_{1}}{\longleftarrow} P \xrightarrow{\pi_{2}} Y$ with the universal property:
For all $X \stackrel{f}{\leftarrow} Z \xrightarrow{g} Y$ in C , there is a unique \mathbf{C}-morphism $h: Z \rightarrow P$ such that
$f=\pi_{1} \circ h$ and $g=\pi_{2} \circ h$
So $\left(P, \pi_{1}, \pi_{2}\right)$ is a terminal object in the category with

- objects: (Z, f, g) where $X \stackrel{f}{\leftarrow} Z \xrightarrow{g} Y$ in C
- morphisms $h:\left(Z_{1}, f_{1}, g_{1}\right) \rightarrow\left(Z_{2}, f_{2}, g_{2}\right)$ are $h \in \mathrm{C}\left(Z_{1}, Z_{2}\right)$ such that $f_{1}=f_{2} \circ h$ and $g_{1}=g_{2} \circ h$
- composition and identities as in C

So if it exists, the binary product of two objects in a category is unique up to (unique) isomophism.

Binary products

In a category C , a product for objects $X, Y \in \mathrm{C}$ is a diagram $X \stackrel{\pi_{1}}{\longleftarrow} P \xrightarrow{\pi_{2}} Y$ with the universal property:
For all $X \stackrel{f}{\leftarrow} Z \xrightarrow{g} Y$ in C , there is a unique C-morphism $h: Z \rightarrow P$ such that
$f=\pi_{1} \circ h$ and $g=\pi_{2} \circ h$
N.B. products of objects in a category do not always exist. For example in the category

the objects 0 and 1 do not have a product, because there is no diagram of the form $0 \leftarrow ? \rightarrow 1$ in this category.

Notation for binary products

Assuming C has binary products of objects, the product of $X, Y \in \mathrm{C}$ is written

$$
X \stackrel{\pi_{1}}{\longleftrightarrow} X \times Y \xrightarrow{\pi_{2}} Y
$$

and given $X \stackrel{f}{\leftarrow} Z \xrightarrow{g} Y$, the unique $h: Z \rightarrow X \times Y$ with $\pi_{1} \circ h=f$ and $\pi_{2} \circ h=g$ is written

$$
\langle f, g\rangle: Z \rightarrow X \times Y
$$

Examples of products

In Set, category-theoretic products are given by the usual cartesian product of sets (set of all ordered pairs)

$$
\begin{aligned}
X \times Y & =\{(x, y) \mid x \in X \wedge y \in Y\} \\
\pi_{1}(x, y) & =x \\
\pi_{2}(x, y) & =y
\end{aligned}
$$

because...

Examples of products

In Preord, can take product of $\left(P_{1}, \sqsubseteq_{1}\right)$ and $\left(P_{2}, \sqsubseteq_{2}\right)$ to be

Examples of products

In Preord, can take product of $\left(P_{1}, \sqsubseteq_{1}\right)$ and $\left(P_{2}, \sqsubseteq_{2}\right)$ to be

The projection functions $P_{1} \stackrel{\pi_{1}}{\longleftarrow} P_{1} \times P_{2} \xrightarrow{\pi_{2}} P_{2}$ are monotone for this pre-order on $P_{1} \times P_{2}$ and have the universal property needed for a product in Preord (check).

Examples of products

In Mon, can take product of $\left(M_{1},{ }_{1}, e_{1}\right)$ and $\left(M_{2}, \cdot{ }_{2}, e_{2}\right)$ to be

Examples of products

In Mon, can take product of $\left(M_{1},{ }_{1}, e_{1}\right)$ and $\left(M_{2}, \cdot{ }_{2}, e_{2}\right)$ to be

The projection functions $M_{1} \stackrel{\pi_{1}}{\longleftrightarrow} M_{1} \times M_{2} \xrightarrow{\pi_{2}} M_{2}$ are monoid morphisms for this monoid structure on $M_{1} \times M_{2}$ and have the universal property needed for a product in Mon (check).

Examples of products

Recall that each pre-ordered set (P, \sqsubseteq) determines a category C_{P}.
Given $p, q \in P=\operatorname{obj}^{C}$, the product $p \times q$ (if it exists) is a greatest lower bound (or glb, or meet) for p and q in (P, ㄷ):
lower bound:
$p \times q \sqsubseteq p \wedge p \times q \sqsubseteq q$
greatest among all lower bounds:
$\forall r \in P, r \sqsubseteq p \wedge r \sqsubseteq q \Rightarrow r \sqsubseteq p \times q$
Notation: glbs are often written $p \wedge q$ or $p \sqcap q$

Duality

A binary coproduct of two objects in a category C is their product in the category C^{OP}.

Duality

A binary coproduct of two objects in a category C is their product in the category C^{op}.

Thus the coproduct of $X, Y \in \mathrm{C}$ if it exists,
is a diagram $X \xrightarrow{\text { inl }} X+Y \stackrel{\text { inr }}{\longleftrightarrow} Y$ with the universal property:
$\forall(X \xrightarrow{f} Z \stackrel{g}{\leftarrow} Y)$,
$\exists!(X+Y \xrightarrow{h} Z)$,

$$
f=h \circ \operatorname{inl} \wedge g=h \circ \mathrm{inr}
$$

Duality

A binary coproduct of two objects in a category C is their product in the category C^{Op}.
E.g. in Set, the coproduct of X and Y

$$
X \xrightarrow{\mathrm{inl}} X+Y \stackrel{\mathrm{inr}}{\longleftarrow} Y
$$

is given by their disjoint union (tagged sum)

$$
\begin{aligned}
X+Y & =\{(0, x) \mid x \in X\} \cup\{(1, y) \mid y \in Y\} \\
\operatorname{inl}(x) & =(0, x) \\
\operatorname{inr}(y) & =(1, y)
\end{aligned}
$$

(prove this)

