## Algorithms challenge: rank-sim Order items by similarity

In this tick, your aim is to find a good order for a set of items, given similarity scores between them. You are given a list of pairs of items and their similarity scores (this list doesn't include all pairs). Here is an example:

## - ticksim train.csv

We saw an illustration in the video for section 6.6. We were given a list of students, and also the similarity scores between their submitted code for an Algorithms tick. We used Kruskal's algorithm to find an ordering for the students, such that two students with a high similarity score appeared close to each other in the order.

Your aim is to produce a good ordering of items. To be precise, let $s_{u v} \in(0,1)$ be the similarity score between items $u$ and $v$. Your score will be

$$
\text { score }=100 \times \frac{x-m}{-m} \quad \text { where } \quad x=\frac{1}{M N} \sum_{\text {pairs }(u, v)}\left|z_{u}-z_{v}\right| \log \left(1-s_{u v}\right) .
$$

Here $z_{u}$ is the index of item $u$ in your ordering, $M$ is the number of pairs, and $N$ is the number of items The normalization is so that the score is always $\leq 100$ (since $x \leq 0$ ); and the constant $m$ is the expected score from a random ordering,

$$
m=\frac{1}{3 M} \sum_{\text {pairs }(u, v)} \log \left(1-s_{u v}\right),
$$


student $j$


|  | score on <br> training data <br> $(2021$ tick1) | score on <br> holdout data <br> (2023 max-flow) |
| :--- | :--- | :--- |
| Matej Urban (Trinity) | 76.39 | 58.20 |
| Kevin Xie (Downing) | 76.46 | 57.39 |
| Reuben Carolan (Churchill) | 76.85 | 57.36 |
| Mario Pariona Molocho (Trinity) | 71.76 | 57.25 |
| Wei Chuen Sin (Hughes Hall) |  | 57.13 |
| Leo Takashige (Trinity) | 75.50 | 53.55 |
| Paul DSouza (Robinson) | 71.12 | 48.75 |
| Ugo Obudulu (Churchill) | 71.88 | 47.20 |
| Katy Thackray (New Hall) | 67.50 | 38.26 |
| Milos Puric (Trinity) | 65.41 | 33.97 |
| Leonard Ong (Hughes Hall) | 65.41 | 33.97 |
| Elizabeth Ho (Trinity) | 64.98 | 32.52 |
| Dhruv Pattem (Trinity) | 31.50 | 22.90 |
| Max Bowman (Robinson) | 0.51 | 1.06 |
| George Ogden (Trinity) | 76.77 | 0.00 |

# The Greatest Algorithm Anybody has ever Written <br> Reuben Carolan 

## Optimization Problem

- We have function.
- We want inputs that give function biggest possible value.
- In this case find an order of the list to maximise:

$$
\sum_{\text {pairs }(u, v)}\left|z_{u}-z_{v}\right| \log \left(1-s_{u v}\right)
$$

## Solution Space

- Solutions have neighbours. In this case solutions are neighbours if they are the same but with two items swapped places.
- We could naively randomly pick a neighbour and move to that solution if it scores better.


## Solution Space



## Simulated Annealing

- We define a Temperature value that decreases over time.
- And for each potential solution an accept probability:

```
accept_p = np.exp(( newscore - oldscore) / curr_temperature)
```

- We Accept a new solution is better if:
(New solution is better OR a random number from $[0,1]<a c c e p t \_p$ )


## Why Simulated Annealing

-Idk ${ }^{-}$(ツ)_/-

- Its good when the solution space is huge but has a small diameter. (In this case we are only ever 152 swaps from the perfect solution).
- Its good at getting a 'pretty good' solution in a short amount of time.
- It works well on the Travelling Salesman problem which is another problem of ordering a list.


## Improvements and Other Algorithms

- Restarting
- Better Candidate Generation
- Ant Colony Optimisation

SECTION X
Optimization algorithms

Non-examinable.

Max-flow
Given a directed graph $g=(V, E)$ in which each edge $u \rightarrow v$ has a capacity $c_{u v}$, and given a source $s$ and a sink $t$, find a flow from $s$ to $t$ with maximum possible value.

Lee $f u v=$ flow on edge $u \rightarrow v$.
we want to maximize flow value $=$ net flow ore of $s=\sum_{w: s \rightarrow a} f_{s u}-\sum_{w: w \rightarrow s} f_{w s}$
For it to be a valid finn, we ned $0 \leq$ fur $\leq$ uv for all edges, and flow conpewation at every vertex $v \in V,\{s, r\}, \dot{e} \sum_{u: v \rightarrow u} f_{w}-\sum_{w: w \rightarrow v} f_{w v}=0 \quad \forall v \in V,\{s, t\}$.

Restate the problem:
$\operatorname{maximize} \quad \sum_{e \in E} b_{e} f_{e}$ where $b_{e}=\left\{\begin{array}{cc}1 & \text { if cole } e \text { storm at } s \\ -1 & \text { if edge } e \text { ends at } s \\ 0 & \text { otherwise }\end{array}\right.$
o othewine
over $f \in \mathbb{R}^{E}, 0 \leq f \leq c \simeq 0$ and $c$ ave vectors in $\mathbb{R}^{E}$, and the inequality must hold element wife such that $\sum_{e \in E} A_{v e} f_{e}=0 \quad \forall v \in V \backslash\{s, t\}$, where $A_{v e}=\left\{\begin{array}{cc}1 & \text { if edge e stans at } v \\ -1 & \text { if edge e ends at } v \\ 0 & \text { othemige }\end{array}\right.$ 0 othemise
we cal rewrim as a matrix equation

```
import pandas
import numpy as np
df = pandas.read_csv('flownetwork_02.csv')
df
```

|  | $\mathbf{u}$ | $\mathbf{v}$ | capacity |
| :--- | :--- | :--- | :--- |
| $\mathbf{0}$ | 0 | 1 | 10000 |
| $\mathbf{1}$ | 1 | 2 | 10000 |
| $\mathbf{2}$ | 2 | 5 | 10000 |
| $\mathbf{3}$ | 0 | 3 | 8000 |
| $\mathbf{4}$ | 3 | 2 | 8000 |
| $\mathbf{5}$ | 1 | 4 | 6000 |
| $\mathbf{6}$ | 4 | 5 | 6000 |

$\mathrm{s}, \mathrm{t}=0,5$
$V=\operatorname{set}(d f . u) \mid \operatorname{set}(d f . v)$
$b=n p . w h e r e(d f . u==s, 1,0)-n p . w h e r e(d f . v==s, 1,0)$
$A=n p$. row_stack([np.where (df. $u==v, 1,0)-n p . w h e r e(d f . v==v, 1,0)$
for $v$ in $V$ if $v$ not in $\{s, t\}]$ )
import scipy.optimize
res = scipy.optimize.linprog(
-b,
bounds=np.column_stack([np.zeros(len(df)), df.capacity]),
A_eq=A, b_eq=np.zeros(len(A))
)
df['flow'] = res.x
minimize $-b \cdot x$
over $\quad x \in \mathbb{R}^{n}, 0 \leq x \leq$ capacity such that $A_{\mathrm{eq}} x=b_{\mathrm{eq}}$

Minimum spanning tree
Given a connected undirected graph where the weight of edge $u-v$ is $c_{u v}$, find a spanning tree of minimum weight.
we want to find a subgraph, ie a subset of edges from the original graph.
Let $x_{u v}= \begin{cases}1 & \text { if edge } u-v \text { is in ar susprogh } \\ 0 & \text { otherix. }\end{cases}$

$$
x \in\{0,1\}^{E}
$$

The weight is $\sum_{u=v} x_{u v} c_{u v}$
For $x$ to be spanning: for every nontrivial partition of rom vertices $V=S \cup \bar{S}, S \neq \varnothing, S \neq V$, there must be at last one edge between them.
Thus $x$ spanning $\Rightarrow \quad \sum_{v \in S, w \in \mathcal{F}} x_{v w} \geqslant 1 \quad \forall$ non-twi al partitions $(s, \bar{s})$.


EXERCISE: show that if $x$ is act spanning then Jparrition $(S, \bar{\zeta})$ with $\sum_{v \in S, w \in \bar{s}} x_{v w}=0$.
For $x$ to be a spanning tree: we need the spanning condirian, and $\sum_{e} x_{e}=|V|-!$ (EXERCISE). Rest are the problem:
minimize $\sum_{e} x_{p} r_{e}$ over $x \in\{0,1\}^{E}$
such that $\sum_{e} x_{e}=|v| t \mid$ and $\sum_{e} A_{s e} x_{e} \geqslant 1$ for all non-twe. pewritions $(S, \zeta)$.

This is too havel! Iakegs constraints axe rough! let's relax the problem, and simply require $x \in \mathbb{R}^{E}, 0 \leq x \leq 1$. Interpret $x_{e}$ as a measure of "how much we wont edge $e$ ".

## What other problems

 from this course can be written as optimization problems?as linear programs?

$$
\begin{aligned}
& \text { problems of the form } \\
& \text { maximize } c \cdot x \\
& \text { over } \\
& \qquad x \in \mathbb{R}^{n}, \quad \underbrace{\ell \leq x \leq u}_{\text {optimal }} \\
& \text { such that } A x=b \\
& \\
& \\
& A^{\prime} x \leq b^{\prime}
\end{aligned}
$$

Gradient descent can write code better than you. I'm sorry.

3:56 PM - 4 Aug 2017
343 Remeets 1,161 Lues 98208 \& (1)
$\bigcirc 72$ 㲸 $343 \quad \bigcirc 1.2 \mathrm{~K} \quad$ II

\& Can I express my task as an optimization problem?
\& ... that can be solved with off-the-shelf optimizers?

* If I can't, is there an adjacent problem that's more amenable? $\square$


## Algorithms challenge: rank-sim Order items by similarity

In this tick, your aim is to find a good order for a set of items, given similarity scores between them. You are given a list of pairs of items and their similarity scores (this list doesn't include all pairs). Here is an example:

- ticksim train.csv

We saw an illustration in the video for section 6.6. We were given a list of students, and also the similarity scores between their submitted code for an Algorithms tick. We used Kruskal's algorithm to find an ordering for the students, such that two students with a high similarity score appeared close to each other in the order.

Your aim is to produce a good ordering of items. To be precise, let $s_{u v} \in(0,1)$ be the similarity score between items $u$ and $v$. Your score will be

$$
\text { score }=100 \times \frac{x-m}{-m} \quad \text { where } \quad x=\frac{1}{M N} \sum_{\text {pairs }(u, v)}\left|z_{u}-z_{v}\right| \log \left(1-s_{u v}\right) .
$$

Here $z_{u}$ is the index of item $u$ in your ordering, $M$ is the number of pairs, and $N$ is the number of items.

In this tick, your aim is to find a good order for a set of items, given similarity scores between them. You are given a list of pairs of items and their similarity scores (this list doesn't include all pairs). Here is an example:

- ticksim train.csv

We saw an illustration in the video for section 6.6. We were given a list of students, and also the similarity scores between their submitted code for an Algorithms tick. We used Kruskal's algorithm to find an ordering for the students, such that two students with a high similarity score appeared close to each other in the order.

Your aim is to produce a good ordering of items. To be precise, let $s_{u v} \in(0,1)$ be the similarity score between items $u$ and $v$. Your score will be

$$
\text { score }=100 \times \frac{x-m}{-m} \quad \text { where } \quad x=\frac{1}{M N} \sum_{\text {pairs }(u, v)}\left|z_{u}-z_{v}\right| \log \left(1-s_{u v}\right)
$$

Here $z_{u}$ is the index of item $u$ in your ordering, $M$ is the number of pairs, and $N$ is the number of items.

## Related (and much easier) problem:



```
over }z\in\mp@subsup{\mathbb{R}}{}{N
such that max(z)-\operatorname{min}(z)=N-1
```

These are called embedding problems. We want to "embed" each student into some other space

- either $z_{u} \in \mathbb{N}$, an integer embedding
- or $z_{u} \in \mathbb{R}$, a real embedding


The hope is that if two students are similar ( $s_{u v} \approx 1$ ) then they'll end up with similar embeddings ( $z_{u} \approx z_{v}$ ).

Overview

Tokenizer

The GPT family of models process text using tokens, which are common sequences of characters found in text. The models understand the statistical relationships between these tokens, and excel at producing the next token in a sequence of tokens

You can use the tool below to understand how a piece of text would be tokenized by the API, and the total count of tokens in that piece of text.

## GPT-3 Codex

The renowned computer scientist Edsger Dijkstra said that "the question of whether machines can think is about as relevant as the question of whether submarines can swim."

Clear
Show example

## Tokens <br> Characters <br> 33 <br> 171

The renowned computer scientist Edsger Dijkstra said that "the question of whether machines can think is about as relevant as the question of whether submarines can swim."


## Maths for NST B lecture 14

A right-circular cylinder of radius $r$ and height $h$ has volume $\pi r^{2} h$ and surface area $2 \pi r^{2}+2 \pi r h$. Given the surface area is $A$, find the largest possible volume.

## Maths for NST B lecture 14

A right-circular cylinder of radius $r$ and height $h$ has volume $\pi r^{2} h$ and surface area $2 \pi r^{2}+2 \pi r h$. Given the surface area is $A$, find the largest possible volume.
maximize $\pi r^{2} h$
over $\quad r, h \in \mathbb{R}_{\geq 0}$
such that $2 \pi r^{2}+2 \pi r h-A=0$

## METHOD

1. Write out the Lagrangian

$$
\mathcal{L}(r, h ; \lambda)=\pi r^{2} h-\lambda\left(2 \pi r^{2}+2 \pi r h-A\right)
$$

2. For a given $\lambda$, find $r \geq 0$ and $h \geq 0$ to maximize $\mathcal{L}(r, h ; \lambda)$
3. Choose $\lambda$ so that these $r$ and $h$ satisfy the constraint

Step: $\left.\quad \begin{array}{l}\frac{\partial I}{\partial r}=2 \pi r h-\lambda(4 \pi r+2 \pi h)=0 \\ \frac{\partial l}{\partial h}=\pi r^{2}-\lambda(2 \pi r)=0\end{array}\right\} \Rightarrow \quad \begin{array}{r}h=4 \lambda \\ r \neq 0 \text { or } r=2 \lambda\end{array}$
Step 3: $2 \pi r^{2}+2 \pi r h=A \Rightarrow 8 \pi \lambda^{2}+16 \pi \lambda^{2}=A \Rightarrow \lambda=\sqrt{\frac{A}{24}}$
This gives $V=\pi r^{2} h=16 \pi \lambda^{3}=16 \pi\left(\frac{A}{24 \pi}\right)^{3 / 2}$

## Maths for NST B lecture 14

## A right-circular cylinder of radius $r$ and height $h$ has

 volume $\pi r^{2} h$ and surface area $2 \pi r^{2}+2 \pi \pi \hbar$. Given the surface area is $A$, find the largest possible volume.maximize $\pi r^{2} h$

$$
\text { over } \quad r, h \in \mathbb{R}_{\geq 0}
$$

such that $2 \pi r^{2}+2 \pi r h-A=0$

## METHOD

1. Write out the Lagrangian

$$
\mathcal{L}(r, h ; \lambda)=\pi r^{2} h-\lambda\left(2 \pi r^{2}+2 \pi r h-A\right)=\underset{\substack{\text { objective } \\ \text { function }}}{ } \sum_{i} \lambda_{i} \text { constraint } i
$$

2. For a given $\lambda$, find $r \geq 0$ and $h \geq 0$ to maximize $\mathcal{L}(r, h ; \lambda)$ one $\lambda$ for every constraint
3. Choose $\lambda$ so that these $r$ and $h$ satisfy the constraint

Why does this method work?
For every $(r, h)$ such that $\operatorname{Area}(r, h)=A$, and for every $\lambda \in \mathbb{R}$,

$$
\begin{aligned}
\text { volume }(r, h) & =\pi r^{2} h \quad \text { by definition of volume } \\
& =\pi r^{2} h-\lambda(\operatorname{Area}(r, h)-A) \text { since } A r e a(r, h)=A \text { by assumption } \\
& =\mathcal{L}(r, h ; \lambda) \text { by definition \& } \mathcal{L} \\
& \leq \max _{r^{\prime}, h^{\prime} \geq 0} \mathcal{L}\left(r^{\prime}, h^{\prime} ; \lambda\right) \text { since we can only possibly increase } \mathcal{L} \text { by maximizing } \\
& =\lambda A-8 \pi \lambda^{3} \text { This maximization f first ewe arguments easy, with simple cakulys }
\end{aligned}
$$

## Maths for NST B lecture 14

A right-circular cylinder of radius $r$ and height $h$ has volume $\pi r^{2} h$ and surface area $2 \pi r^{2}+2 \pi r h$. Given the surface area is $A$, find the largest possible volume.
maximize $\pi r^{2} h$
over $\quad r, h \in \mathbb{R}_{\geq 0}$
such that $2 \pi r^{2}+2 \pi r h-A=0$

## METHOD

1. Write out the Lagrangian

$$
\begin{aligned}
& \text { agrangian } \\
& \qquad \mathcal{L}(r, h ; \lambda)=\pi r^{2} h-\lambda\left(2 \pi r^{2}+2 \pi r h-A\right) \quad \text { well get answer as functions of } \lambda: \begin{array}{r}
r=r(\lambda), \\
n=h(\lambda)
\end{array}
\end{aligned}
$$

2. For a given $\lambda$, find $r \geq 0$ and $h \geq 0$ to maximize $\mathcal{L}(r, h ; \lambda)$
3. Choose $\lambda$ so that these $r$ and $h$ satisfy the constraint This works in some problems, but not all. find $\lambda$ that Why does this method work? minimizes the upper bound".

For every $(r, h)$ such that $\operatorname{Area}(r, h)=A$, and for every $\lambda \in \mathbb{R}$,

$$
\begin{aligned}
\operatorname{volume}(r, h) & =\pi r^{2} h \\
& =\pi r^{2} h-\lambda(\operatorname{Area}(r, h)-A) \\
& =\mathcal{L}(r, h ; \lambda) \\
& \leq \max _{r^{\prime}, h^{\prime} \geq 0} \mathcal{L}\left(r^{\prime}, h^{\prime} ; \lambda\right) \\
& =\lambda A-8 \pi \lambda^{3}
\end{aligned}
$$

Max-flow
Given a directed graph $g$ in which each edge $u \rightarrow v$ has a capacity $c_{u v}$, and given a source $s$ and a sink $t$, find a flow from $s$ to $t$ with maximum possible value.

$$
\mathcal{L}(f ; \lambda)=\text { value }(f)-\sum_{v \in V \backslash\{s, t\}} \lambda_{v}(\text { net flow }(v)-0)
$$

flow $f$
For every $(\gamma, h)$ such that $\operatorname{Area}(\gamma, h)=A$, and for every $\lambda \in \mathbb{K}, \mathbb{R}^{\downarrow-2}$

$$
\begin{aligned}
\text { value }(f) \text { volume }(r, h) & =\pi x^{2} k \\
& =\pi f^{2} h-\lambda(\text { Area }(x, h)-A) \\
& =\mathcal{L}(r, h ; \lambda) L(f ; \lambda) \\
& \leq \max _{r^{\prime}, h^{\prime} \geq 0} \mathcal{L}\left(r^{\prime}, h^{\prime} ; \lambda\right) \max _{0^{\prime} f^{\prime} \leq c} L\left(f^{\prime} ; \lambda\right) \\
& =\lambda A-8 \pi \lambda^{2}=\operatorname{capacity}(\lambda) \quad \text { think of } \lambda \text { as a "generalized cut " }
\end{aligned}
$$

The Lagrangian is

$$
\mathcal{L}(f ; \lambda)=\left(\sum_{u: s \rightarrow u} f_{s u}-\sum_{w: w \rightarrow s} f_{w s}\right)-\sum_{v \neq s, t} \lambda_{v}\left(\sum_{u: v \rightarrow u} f_{v u}-\sum_{w: w \rightarrow v} f_{w v}\right)
$$

The preceding argument (called "Lagrangian weak duality") says that for any flow $f$ and for any $\lambda$,

$$
\operatorname{val}(f) \leq \max _{f^{\prime}: 0 \leq f^{\prime} \leq C} \mathcal{L}\left(f^{\prime} ; \lambda\right)
$$

$$
\begin{aligned}
& \mathcal{L}\left(f^{\prime} ; \lambda\right)=\sum_{v} \delta_{v}\left(\sum_{v: v \rightarrow 4} f_{v a}^{\prime}-\sum_{w: w \rightarrow v} f_{v v}^{\prime}\right) \text { where } \delta_{v}=\left\{\begin{array}{lll}
1 & \text { if } v=s \\
0 & \text { if } \\
\lambda_{v}=t \\
\text { oinewie }
\end{array}\right. \\
& =\sum_{v, u: v \rightarrow u} \delta_{v} f_{v u}^{\prime}-\sum_{v, w: w \rightarrow v} \delta_{w} f_{w v}^{\prime} \\
& =\sum_{a, b: a \rightarrow b} \delta_{a} f_{a b}^{\prime}-\sum_{b, a: a \rightarrow b} \delta_{b} f_{a b}^{\prime} \\
& =\sum_{a, b: a \rightarrow b} f_{a b}^{\prime}\left(\delta_{a}-\delta_{b}\right)
\end{aligned}
$$

This is maximized at $f_{a b}^{\prime}=\left\{\begin{array}{lll}c_{a b} & \text { if } & \delta_{a}>\delta_{b} \\ 0 & \text { if } & \delta_{a}<\delta_{b} \\ ? & \text { if } & \delta_{a}=\delta_{b}\end{array}=\left\{\begin{array}{lll}C_{a b} & \text { if } a \in S, b \in S \\ 0 & \text { if a } A S, b \in S \\ ? & \text { if } a, b \text { on seems sit }\end{array}\right.\right.$
Weak duality holds for any $\lambda$. Let's consider $\lambda_{v}=1$ if $v \in S$ for some cut $(s, \xi)$
0 if v\&s
For such a $\lambda, \max _{o \in f^{\prime} \leqslant c} L\left(f^{\prime} ; \lambda\right)=\sum_{a \in s, b \notin s} c_{a b} \cdot \operatorname{capaciry}(s, \bar{\zeta})$

There are deep connections between optimization and graph algorithms

* Starting with the Lagrangian, it is sometimes possible to derive fast algorithms, called 'primal-dual' algorithms
» Ford-Fulkerson and Kruskal are examples from this general family

