SECTION 7.6 The Fibonacci Heap

- push() O(1) amortized
 Lazy, just adds singleton nodes to the rootlist
- decreasekey() O(1) amortized
 Does some work to keep the trees in shape
 Adds singleton nodes to the rootlist
- popmin() O(log N) amortized
 Cleans up the rootlist
 (at most one tree of any given degree)


```
def dijkstra(g, s):
```

```
toexplore = PriorityQueue()
toexplore.push(s, key=0)
while not toexplore.is_empty():
```

```
v = toexplore.popmin()
for (w,edgecost) in v.neighbours:
    dist_w = v.distance + edgecost
```

toexplore.decreasekey(w, key=dist_w)

QUESTION. How can decreasekey be $O(\log N)$?

Doesn't it take O(N) in the first place, to find the heap node that we want to decrease?

page 69

def dijkstra(g, s):

```
toexplore = PriorityQueue()
toexplore.push(s, key=0)
```

```
while not toexplore.is_empty():
```

```
v = toexplore.popmin()
```

```
for (w,edgecost) in v.neighbours:
    dist_w = v.distance + edgecost
```

```
toexplore.decreasekey(w, key=dist_w
```

Algorithms tick: fib-heap × +							
$\leftarrow \rightarrow C$ \triangleq cl.cam.ac.uk/teaching/2223/Algorithm2/ticks/fib-heap.html \odot	B	☆	0	8	ч _{ру} ND	*) :

Algorithms tick: fib-heap Fibonacci Heap

In this tick you will implement the Fibonacci Heap. This is an intricate data structure – for some of you, perhaps the most intricate programming you have yet programmed. If you haven't already completed the <u>dis-set tick</u>, that's a good warmup.

Step 1: heap operations

The first step is to implement a FibNode class to represent a node in the Fibonacci heap, and a FibHeap class to represent the entire heap. Each FibNode should store its priority key k, and the FibHeap should store a list of root nodes as well as the minroot.

SECTION 7.8 Amortized analysis of the Fibonacci Heap

decreasekey has true cost O(L)so we want $\Delta \Phi = -L$ to pay for it popmin merges trees in its cleanup phase, true cost O(M)so we want $\Delta \Phi = -M$ to pay for it

 $\Phi = \text{num.roots} + 2 \times \text{num.losers}$

in advance for

pays

these "uncontrolled" irevations

SECTION 7.8 Amortized analysis of the Fibonacci Heap

SHAPE THEOREM

In a Fibonacci heap with N items, every node has degree $\leq \log_{\phi} N$ where ϕ is the golden ratio.

popmin also has to do $O(d_{\max})$ work where d_{\max} is the maximum possible degree in a heap with N items

SHAPE THEOREM

In a Fibonacci heap with N items, every node has degree $\leq \log_{\phi} N$

SHAPE LEMMA

Consider a subtree in a Fibonacci heap. If the subtree's root has d children, then the number of nodes in the subtree is $\geq F_{d+2}$ where F_1, F_2, \dots are the Fibonacci numbers

SHAPE THEOREM

In a Fibonacci heap with N items, every node has degree $\leq \log_{\phi} N$

Proof of theorem.

Pick a node with maximum degree, call it d, and consider the subtree rooted at this node.

SHAPE LEMMA

Consider a subtree in a Fibonacci heap. If the subtree's root has d children, then the number of nodes in the subtree is $\geq F_{d+2}$ where F_1, F_2, \dots are the Fibonacci numbers

page 74

SHAPE LEMMA

Consider a subtree in a Fibonacci heap. If the subtree's root has d children, then the number of nodes in the subtree is $\geq F_{d+2}$ where F_1, F_2, \dots are the Fibonacci numbers

GRANDCHILD RULE

A node x is said to satisfy the grandchild rule if its children can be ordered, call them $y_1, ..., y_d$, such that for all $i \in \{1, ..., d\}$ num. grandchildren of x via $y_i \ge i - 2$

ALGORITHMIC CLAIM

In a Fibonacci heap, at every instant in time, every node x satisfies the grandchild rule, when we order its children y_1, \ldots, y_d by when they became children of x

page 74

SHAPE LEMMA

Consider a subtree in a Fibonacci heap. If the subtree's root has d children, then the number of nodes in the subtree is $\geq F_{d+2}$ where F_1, F_2, \dots are the Fibonacci numbers

GRANDCHILD RULE

A node x is said to satisfy the grandchild rule if its children can be ordered, call them $y_1, ..., y_d$, such that for all $i \in \{1, ..., d\}$ num. grandchildren of x via $y_i \ge i - 2$

MATHEMATICAL CLAIM

Consider a tree where all nodes satisfy the grandchild rule. Let N_d be the smallest number of nodes in a tree whose root has d children. Then $N_d = F_{d+2}$.

child y_i has degree $\ge i - 2$, so its subtree has $\ge N_{i-2}$ nodes num.nodes in tree $\geq N_{d-2} + N_{d-3} + \dots + N_1 + N_0 + N_0 + 1$

 $N_d = N_{d-2} + N_{d-3} + \dots + N_0 + N_0 + 1$ $N_{d-1} = N_{d-3} + \dots + N_0 + N_0 + 1$

$$\Rightarrow N_d = N_{d-2} + N_{d-1}$$

SECTION 7.9 Disjoint sets

1	def	kruskal(g):
2		tree_edges = []
3		partition = DisjointSet()
4		for v in g.vertices:
5		partition.add_singleton(v)
6		edges = sorted(g.edges, sortkey = $\lambda(u,v,weight)$: weight)
7		
8		for (u,v,edgeweight) in g.edges:
9		<pre>p = partition.get_set_with(u)</pre>
10		<pre>q = partition.get_set_with(v)</pre>
11		if p != q:
12		<pre>tree_edges.append((u,v))</pre>
13		<pre>partition.merge(p, q)</pre>

IMPLEMENTATION 0

mysets = {a:"h1", b:"h1", c:"h2", d:"h2", e:"h2", f:"h2", g:"h3"}

def merge(x,y):
 for every item in the entire collection:
 if the item's set is y then update it to be x

AbstractDataType DisjointSet:

Holds a dynamic collection of disjoint sets

Add a new set consisting of a single item (assuming it's not been added already)
add_singleton(Item x)

Return a handle to the set containing an item.
The handle must be stable, as long as the DisjointSet is not modified.
Handle get_set_with(Item x)

```
# Merge two sets into one
merge(Handle x, Handle y)
```


IMPLEMENTATION 0'

Each item points to a representative item for its set

mysets = {a:a, b:a, c:e, d:e, e:e, f:e, g:g}

IMPLEMENTATION 1 "FLAT FOREST"

Each item points to a representative item for its set Each set has a linked list, starting at its representative

```
def merge(x,y):
    for every item in set y:
        update it to belong to set x
```

def get_set_with(x):
 return x's parent

IMPLEMENTATION 1 "FLAT FOREST"

Each item points to a representative item for its set Each set has a linked list, starting at its representative

```
def merge(x,y):
    for every item in set y:
        update it to belong to set x
```

def get_set_with(x):
 return x's parent

IMPLEMENTATION 2 "DEEP FOREST"

Sets are stored as trees Use the root item to represent the set

def merge(x,y):
 update one of the roots to point to the other

def get_set_with(x):
 walk up the tree from x to the root
 return this root

QUESTION. What's a sensible heuristic for merge, to speed up get_set_with?

IMPLEMENTATION 3 "LAZY FOREST"

def merge(x,y):

as before, using the Union by Rank heuristic

def get_set_with(x):

walk up the tree from x to the root walk up again, and make all items point to root return this root

Can we 'manifest' our workings so that subsequent operations benefit?

```
0 def selectSort(a):
       """BEHAVIOUR: Run the selectsort algorithm on the integer
1
       array a, sorting it in place.
\mathbf{2}
3
       PRECONDITION: array a contains len(a) integer values.
4
\mathbf{5}
       POSTCONDITION: array a contains the same integer values as before,
6
       but now they are sorted in ascending order."""
7
8
       for k from 0 included to len(a) excluded:
9
           # ASSERT: the array positions before a[k] are already sorted
10
11
           # Find the smallest element in a[k:END] and swap it into a[k]
12
           iMin = k
13
           for j from iMin + 1 included to len(a) excluded:
14
               if a[j] < a[iMin]:</pre>
15
                  iMin = j
16
           swap(a[k], a[iMin])
17
```


1. Find the lowest value, and put it at the front

- Is B.val < A.val? No.</p>
- Is C.val < A.val? No.</p>
- Is D.val < A.val? Yes.</p>
- Swap A and D

$$a = \begin{bmatrix} D & B & C & A \\ val=1 & val=5 & val=3 & val=2 \end{bmatrix}$$

2. Find the second-lowest in [B,C,A]

we had two useful pieces of information, but we didn't keep them is

Flat Forest (with weighted-union)

Deep Forest (with union-by-rank)

Lazy Forest

(with union-by-rank + path compression)

Aggregate complexity analysis

Any *m* operations on up to *N* items takes $O(m + N \log N)$ [Ex. sheet 6 q. 13]

 $O(m \log N)$

 $O(m \alpha(N))$

 $\alpha(N) = 0$ for N = 0,1,2= 1 for N = 3= 2 for N = 4 ... 7= 3 for N = 8 ... 2047= 4 for $N = 2048 ... 10^{80}$

Flat Forest (with weighted-union)

Deep Forest (with union-by-rank)

Lazy Forest

(with union-by-rank + path compression)

Aggregate complexity analysis

Any *m* operations on up to *N* items takes $O(m + N \log N)$

 $O(m \log N)$

 $O(m \alpha(N))$

 $\alpha(N) = 0$ for N = 0,1,2= 1 for N = 3= 2 for N = 4 ... 7= 3 for N = 8 ... 2047= 4 for $N = 2048 ... 10^{80}$

- 1. take a handsome stoat
- 2. define a graph vertices on a grid, and edges between adjacent grid cells
- 3. assign edgeweights weight=low means vertices have similar colours
- run Kruskal and find clusters of similar colour

flat

flat

0 (0180 1808-00 (38-0 8 1013-08	62-0	
1000 20100 20 000200 0000000		

deep

•	0 000500 0000 - C22800 C22400 00 - C04-280		B-00-08 (0-80)-0401-0480-04000-0 400000-0 40-0-0-0-0-0-00000-008-00-0840-00-0-0-0-	
		•		
 000				

lazy

	-	 					 	 									 			 				 			 			 				
							-10										 	-	-	 			 	 		G.00.4	 	 	 		 		 	
-2000			_	an east	• •					_	and states of	a 7		-	CHERTON	100-0161	 	220		 	100 IS	30-000-C100-C200-C2	 	 0.0030.0	0.40		 	 	 	 	 -	-	 	
-		 	• •	10 0 5 00		-			-			-	-								06				-						010			
																																•		
-																																		