SECTION 7.6

The Fibonacci Heap

- push() - O(1) amortized Lazy, just adds singleton nodes to the rootlist
- decreasekey () $-O$ (1) amortized Does some work to keep the trees in shape Adds singleton nodes to the rootlist
- popmin() - $O(\log N)$ amortized Cleans up the rootlist
(at most one tree of any given degree)


```
def dijkstra(g, s):
    toexplore = PriorityQueue()
    toexplore.push(s, key=0)
    while not toexplore.is_empty():
        v = toexplore.popmin()
        for ( }w,\mathrm{ ,edgecost) in v.neighbours:
        dist_w = v.distance + edgecost
                toexplore.decreasekey(w, key=dist_w)
```

QUESTION. How can decreasekey be $O(\log N)$?

Doesn't it take $O(N)$ in the first place, to find the heap node that we want to decrease?

def dijkstra(g,s):
toexplore = PriorityQueue()
toexplore.push(s, key=0)
while not toexplore.is_empty():
$v=$ toexplore.popmin()
for (w, edgecost) in v.neighbours: dist_w $=v$. distance + edgecost
toexplore.decreasekey (w, key=dist_w)

Algorithms tick: fib-heap Fibonacci Heap

In this tick you will implement the Fibonacci Heap. This is an intricate data structure - for some of you, perhaps the most intricate programming you have yet programmed. If you haven't already completed the dis-set tick, that's a good warmup.

Step 1: heap operations

The first step is to implement a FibNode class to represent a node in the Fibonacci heap, and a FibHeap class to represent the entire heap. Each FibNode should store its priority key k, and the FibHeap should store a list of root nodes as well as the minroot.

SECTION 7.8

Amortized analysis of the Fibonacci Heap

decreasekey has true cost $O(L)$ so we want $\Delta \Phi=-L$ to pay for it

popmin merges trees in its cleanup phase, true cost $O(M)$ so we want $\Delta \Phi=-M$ to pay for it

SECTION 7.8

Amortized analysis of the Fibonacci Heap

SHAPE THEOREM

In a Fibonacci heap with N items, every node has degree $\leq \log _{\phi} N$ where ϕ is the golden ratio.

popmin also has to do $O\left(d_{\max }\right)$ work
where $d_{\max }$ is the maximum possible degree in a heap with N items

In a Fibonacci heap with N items, every node has degree $\leq \log _{\phi} N$

SHAPE LEMMA

Consider a subtree in a Fibonacci heap. If the subtree's root has d children, then the number of nodes in the subtree is $\geq F_{d+2}$ where F_{1}, F_{2}, \ldots are the Fibonacci numbers

SHAPE THEOREM

In a Fibonacci heap with N items, every node has degree $\leq \log _{\phi} N$
Proof of theorem.
Pick a node with maximum degree, call it d, and consider the subtree rooted at this node.
$N \geq$ num.nodes in subtree
$\geq F_{d+2}$ by lemma
$\geq \phi^{d}$ linear algebra:
Hence $d \leq \log _{\phi} N . \quad F_{n}=\frac{\phi^{n}-(-\phi)^{n}}{\sqrt{5}}$

SHAPE LEMMA

Consider a subtree in a Fibonacci heap. If the subtree's root has d children, then the number of nodes in the subtree is $\geq F_{d+2}$ where F_{1}, F_{2}, \ldots are the Fibonacci numbers

SHAPE LEMMA

Consider a subtree in a Fibonacci heap. If the subtree's root has d children, then the number of nodes in the subtree is $\geq F_{d+2}$ where F_{1}, F_{2}, \ldots are the Fibonacci numbers

GRANDCHILD RULE

A node x is said to satisfy the grandchild rule if its children can be ordered, call them y_{1}, \ldots, y_{d}, such that for all $i \in\{1, \ldots, d\}$
num. grandchildren of x via $y_{i} \geq i-2$

ALGORITHMIC CLAIM

In a Fibonacci heap, at every instant in time, every node x satisfies the grandchild rule, when we order its children y_{1}, \ldots, y_{d} by when they became children of x

when x acquired y_{2}, x had a child already, so y_{2} did too

when x acquired
y_{3}, x had two
children already,
so y_{3} did too

each y_{i} might have lost a single child

$$
\begin{aligned}
& y_{1} \text { now has } \geq 0 \text { children } \\
& y_{2} \text { now has } \geq 0 \text { children } \\
& y_{3} \text { now has } \geq 1 \text { child }
\end{aligned}
$$

$$
y_{d} \text { now has } \geq d-2 \text { children }
$$

SHAPE LEMMA

Consider a subtree in a Fibonacci heap. If the subtree's root has d children, then the number of nodes in the subtree is $\geq F_{d+2}$ where F_{1}, F_{2}, \ldots are the Fibonacci numbers

GRANDCHILD RULE

A node x is said to satisfy the grandchild rule if its children can be ordered, call them y_{1}, \ldots, y_{d}, such that for all $i \in\{1, \ldots, d\}$
num. grandchildren of x via $y_{i} \geq i-2$

MATHEMATICAL CLAIM

Consider a tree where all nodes satisfy the grandchild rule. Let N_{d} be the smallest number of nodes in a tree whose root has d children. Then $N_{d}=F_{d+2}$.

child y_{i} has degree $\geq i-2$,
so its subtree has $\geq N_{i-2}$ nodes

SECTION 7.9
Disjoint sets


```
def kruskal(g):
    tree_edges = []
    partition = DisjointSet()
    for v in g.vertices:
        partition.add_singleton(v)
    for (u,v,edgeweight) in g.edges:
        p = partition.get_set_with(u)
        q = partition.get_set_with(v)
        if p != q:
            tree_edges.append((u,v))
            partition.merge(p, q)
```

 edges \(=\operatorname{sorted}(g\). edges, sortkey \(=\lambda(u, v\), weight \():\) weight \()\)

AbstractDataType DisjointSet:

```
# Holds a dynamic collection of disjoint sets
    # Add a new set consisting of a single item (assuming it's not been added already)
    add_singleton(Item x)
    # Return a handle to the set containing an item.
    # The handle must be stable, as long as the DisjointSet is not modified.
    Handle get_set_with(Item x)
    # Merge two sets into one
    merge(Handle x, Handle y)
```


IMPLEMENTATION O'

Each item points to a representative item for its set

IMPLEMENTATION 1 "FLAT FOREST"

Each item points to a representative item for its set Each set has a linked list, starting at its representative

```
def merge(x,y):
    for every item in set y:
        update it to belong to set x
```

```
def get_set_with(x):
    return x's parent
```


IMPLEMENTATION 1 "FLAT FOREST"

Each item points to a representative item for its set Each set has a linked list, starting at its representative

```
def merge(x,y):
    for every item in set y:
        update it to belong to set x
```

```
def get_set_with(x):
    return x's parent
```


IMPLEMENTATION 2 "DEEP FOREST"

Sets are stored as trees

Use the root item to represent the set
def merge (x, y) :
update one of the roots to point to the other
def get_set_with(x):
walk up the tree from x to the root return this root

QUESTION. What's a

 sensible heuristic for merge, to speed up get_set_with?
IMPLEMENTATION 3 "LAZY FOREST"

def merge(x, y):
as before, using the Union by Rank heuristic
def get_set_with(x):
walk up the tree from x to the root walk up again, and make all items point to root return this root

Can we 'manifest' our workings so that subsequent operations benefit?

```
def selectSort(a)
    """BEHAVIOUR: Run the selectsort algorithm on the integer
    array a, sorting it in place
    PRECONDITION: array a contains len(a) integer values
    POSTCONDITION: array a contains the same integer values as before,
    but now they are sorted in ascending order."""
    for k from O included to len(a) excluded:
        # ASSERT: the array positions before a[k] are already sorted
    # Find the smallest element in a[k:END] and swap it into a[k]
    iMin = k
    for j from iMin + 1 included to len(a) excluded:
        if a[j] < a[iMin]:
                iMin = j
    swap(a[k], a[iMin])
```


1. Find the lowest value, and put it at the front

- Is B.val < A.val? No.
- Is C.val < A.val? No.
- Is D.val < A.val? Yes.
- Swap A and D

2. Find the second-lowest in $[B, C, A]$
we had two uschl pieces of
information, but we didin keep them \ddot{n}

Aggregate complexity analysis

Flat Forest

(with weighted-union)

Deep Forest
(with union-by-rank)

Lazy Forest
(with union-by-rank + path compression)

Any m operations on up to N items takes $O(m+N \log N)$
[Ex. sheet 6 q. 13]
$O(m \log N)$

$$
O(m \alpha(N))
$$

$$
\begin{aligned}
\alpha(N) & =0 & & \text { for } N=0,1,2 \\
& =1 & & \text { for } N=3 \\
& =2 & & \text { for } N=4 . .7 \\
& =3 & & \text { for } N=8 . .2047 \\
& =4 & & \text { for } N=2048 . .10^{80}
\end{aligned}
$$

Aggregate complexity analysis

Flat Forest

(with weighted-union)

Deep Forest

(with union-by-rank)

Lazy Forest
(with union-by-rank + path compression)

Any m operations on up to N items takes $O(m+N \log N)$

$$
O(m \alpha(N))
$$

$$
\begin{aligned}
\alpha(N) & =0 & & \text { for } N=0,1,2 \\
& =1 & & \text { for } N=3 \\
& =2 & & \text { for } N=4 . .7 \\
& =3 & & \text { for } N=8 . .2047 \\
& =4 & & \text { for } N=2048 . .10^{80}
\end{aligned}
$$

1. take a handsome stoat
2. define a graph vertices on a grid, and edges between adjacent grid cells
3. assign edgeweights weight=low means vertices have similar colours
4. run Kruskal and find clusters of similar colour

lazy

