SECTION 7.5
Three priority queues

AbstractDataType PriorityQueue

\# Holds a dynamic collection of items
\# Each item has a value v, and a key/priority k
\# Extract the item with the smallest key
Pair<Key, Value> popmin()
\# Add v to the queue, and give it key k push(Value v, Key k)
\# For a value already in the queue, give it a new (lower) key decreasekey (Value v, Key k^{\prime})
\# Sometimes we also include methods for
Pair<Key, Value> peekmin()
delete(Value v)
merge_with(PriorityQueue q)

The binary heap

The heap property
every node's key is \leq those of its children

The binary heap

popmin()

The binary heap

push(new item)

The binary heap

push(new item)

The binary heap

SHAPE LEMMA

The height is $O(\log N)$
where N is the number of items in the heap

COMPLEXITY ANALYSIS

All operations are $O(\log N)$,

Binomial trees

(2) a tree of degree 0
(2) (5) two trees of degree 0
merge to give a tree of degree 1

two trees of degree 1 merge to give a tree of degree 2

two trees of degree 2
merge to give a tree of degree 3

The binomial heap

- a list of binomial trees, at most one of each degree
- each tree is a heap

push(new item)

The binomial heap

decreasekey (item, new key)

The binomial heap

The binomial heap

$$
N=9 \text { items }=\frac{2^{0} 2^{1} 2^{2} 2^{3}}{10001}
$$

push(new item)
append
(4) (3)

$$
\begin{aligned}
& \text { merge trees } \\
& \text { of equal degree }
\end{aligned}
$$

decreasekey (item, new key)

SHAPE THEOREM

- A binomial tree of degree k has 2^{k} items
- In a binomial heap with N items, the binary digits of N tell us which binomial trees are present

Also, in a binomial tree of degree k,

- the root has degree k
- its k children are binomial trees
- the height is k

COMPLEXITY ANALYSIS

- push() is $O(\log N)$ we have to merge $O(\log N)$ trees
- decreasekey () is $O(\log N)$ in the worst case we have to bubble up from the bottom of the largest tree
- popmin() is $O(\log N)$ scan $O(\log N)$ trees; promote $O(\log N)$ children; do $O(\log N)$ merges to recover the heap

	popmin	push	decreasekey
binary heap	$O(\log N)$	$O(\log N)$	$O(\log N)$
binomial heap	$O(\log N)$	$O(\log N)$	$O(\log N)$
		And what about aggregate costs?	

	popmin	push	decreasekey
binary heap	$O(\log N)$	$O(\log N)$	$O(\log N)$
binomial heap	$O(\log N)$	$O(\log N)$	$O(\log N)$
		And what about aggregate costs?	

	popmin	push	decreasekey
binary heap	$O(\log N)$	$O(\log N)$	$O(\log N)$
binomial heap	$O(\log N)$	$O(\log N) \quad O(\log N)$	
		And what about aggregate costs?	

	popmin	push	decreasekey
binary heap	$O(\log N)$	$O(\log N)$	$O(\log N)$
binomial heap	$O(\log N)$	$O(\log N)$	$O(\log N)$
		And ripatabreuted agatere. Ghteetasta? 2, 4]	

Dijsktra's algorithm makes $O(E)$ calls to push/decreasekey, and only $O(V)$ calls to popmin.

QUESTION. Can we make both push and decreasekey be $O(1)$?

push is o(1)

push(new item)

derreasekey is o(1)

decreasekey(item, new key)

popmin is $O(N)$

popmin()

	popmin	push
binary heap N	$O(\log N)$	$O(\log N)$
(see heapsort, §2.10)		$O(\log N)$
decreasekey		

* Be lazy
* Do cleanup in batches
* Give your data enough structure that
you only need to touch a little bit of it

SECTION 7.6

The Fibonacci Heap

- store a list of trees, each a heap
- trees can have any shape
- keep track of the minroot

```
# Maintain a list of heaps (i.e. store a pointer to the root of each heap)
roots = []
# Maintain a pointer to the smallest root
minroot = None
def push(Value v, Key k):
    create a new heap h consisting of a single item (v,k)
        add h to the list of roots
        update minroot if minroot is None or k < minroot.key
```


page 65-66
def popmin():
take note of minroot.value and minroot.key delete the minroot node, and promote its children to be roots
\# cleanup the roots
while there are two roots with the same degree:
merge those two roots, by making the larger root a child of the smaller update minroot to point to the root with the smallest key
return the value and key we noted in line 13

popmin()

extract min roo

6

(3) $5-2$

decreasekey(item, new key)

LAZY STRATEGY

Dump heap-violating nodes into the root list, to be cleaned up by the next popmin()
... but we might end up with a heap with wide shallow trees, which will make popmin() slow

Rule 1. Lose one child, and you're marked a LOSER

Rule 2. Lose two children, and you're dumped into the root list

```
def decreasekey(v, k')
```

 let \(n\) be the node where this value is stored
 \(n\). key \(=k^{\prime}\)
 if \(n\) violates the heap condition:
 repeat:
 \(p=n\).parent
 remove \(n\) from \(p\).children
 insert \(n\) into the list of roots, updating minroot if necessary
 \(n\).loser = False
 \(n=p\)
 until \(p\).loser \(==\) False
 if \(p\) is not a root:
 \(p\).loser = True
 \# Modify popmin so that when we promote minroot's children, we erase any loser flags

SECTION 7.8

Amortized analysis of the Fibonacci Heap

FIBONACCI HEAP
 COMPLEXITY ANALYSIS

COMPLEXITY ANALYSIS

In a Fibonacci heap with N items, using the potential function
$\Phi=$ num.roots $+2 \times$ num.losers,

- push() has amortized cost O (1)
- decreasekey () has amortized cost O (1)
- popmin() has amortized cost $O(\log N)$

SHAPE THEOREM

Every node has degree $\leq \log _{\phi} N$

BINOMIAL HEAP
 COMPIEXITY ANAIYSIS

COMPLEXITY ANALYSIS

In a binomial heap with N items

- push() is $O(\log N)$
- decreasekey () is $O(\log N)$
- popmin() is $O(\log N)$

SHAPE THEOREM

The largest tree has degree $\leq \log _{2} N$

def push(Value v, Key k):
create a new heap h consisting of a single item (v, k)
add h to the list of roots
update minroot if minroot is None or $k<$ minroot. key

$$
\begin{aligned}
& C=O(1) \\
& \Delta \Phi=1 \\
& \text { am. cost }=c+\Delta \Phi=O(1)
\end{aligned}
$$

def decreasekey (v, k^{\prime}):
let n be the node where this value is stored
n. key $=k^{\prime}$
if n violates the heap condition:
repeat:
$p=n$. parent
remove n from p.children
insert n into the list of roots, updating minroot if necessary
n. loser $=$ False
$n=p$
until p.loser == False
if p is not a root:
p. loser $=$ True

CASE I: no heap violation

$$
c=0(1) \quad \Delta \Phi=0 \quad \Rightarrow c+\Delta \Phi=0 \text { (1) }
$$

CASE II: heap violation

1. move a to rootlist

$$
\begin{aligned}
& \text { e a to rootlist } \\
& c=0(1) \quad \Delta \Phi=1 \quad \text { or } \Delta \Phi=-1 \text { if a was loser } \Rightarrow c+\Delta \Phi=O(1))
\end{aligned}
$$

2. Move up L losers also

$$
\begin{aligned}
& \text { ve up L losers also } \quad \Rightarrow \quad c+\Delta \Phi=O(1) \\
& c=O(L) \quad \Delta \Phi=+L-2 L=-L \quad
\end{aligned}
$$

3. Mark d as a loser unless d is root,

$$
\begin{array}{cc}
\text { un k as a loser } & \text { unless d is roost, } \\
c=O(1) \quad \Delta \Phi=2 \quad \Delta \Phi=0
\end{array} \quad \Rightarrow \quad c+\Delta \Phi=O \text { (1) }
$$

def popmin():
take note of minroot. value and minroot. key
delete the minroot node, and promote its children to be roots
\# cleanup the roots
while there are two roots with the same degree:
merge those two roots, by making the larger root a child of the smaller
update minroot to point to the root with the smallest key
return the value and key we noted in line 13

$$
\Delta \Phi \leq-1+\# \text { children }\{\Rightarrow c+\Delta \Phi-0
$$

3. fix minvort, by scanning the cleaned-up rootlist:
there's at more ore tree \& each degree; max degree $=O(\log N) \Rightarrow C=O(\log N)$
def ?eanp(roots):
root/alrray = [None, None,
for each tree t in roots:
$x=t$
while root_array[x.degree] is not None: $u=$ root_array[x.degreet ${ }_{\text {nu ni }}$ der. by 1
root_array $[x$.degree $]=$ None

$x=\operatorname{merge}(x, u)$
root_array[x.degree] $=u$
roots $=$ list of non-None values from root_array
def cleanup(roots):
root_array = [None, None,]
for each tree t in roots:
$x=t$
while root_array[x.degree] is not None:
$u=$ root_array[x. degree]
root_array[x.degree] = None
$x=\operatorname{merge}(x, u)$
root_array[x.degree] $=u$
roots $=$ list of non-None values from root_array

0 1 2 3

At the end of cleanup, we want to have ≤ 1 tree of any given degree.

SHAPE THEOREM

Every node has degree $\leq \log _{\phi} N$
To fit them these trees, we'll need
an array of size $\leq \log _{\phi} N+1$

```
def cleanup(roots):
    root_array = [None, None
    for each tree t in roots:
        x = t
        while root_array[x.degree] is not None:
            u = root_array[x.degree]
            root_array[x.degree] = None
            x = merge (x,u)
        root_array[x.degree] = u
    roots = list of non-None values from root_array
```

for each t in roots:

(6)

updated roots:
\qquad
root_array

Suppose we stunt with x crees, do M merges, and end up with y trees.

$$
\begin{aligned}
& c=O(x+M+\log N)=O(y+2 M+\log N)=O(2 M+2 \log N)=O(M+\log N) \\
& y=x-M \text {, since } \quad y \leqslant \log _{\phi} N+1 \\
& \begin{array}{l}
\text { each marge decreaks } \\
4 \text { trees }
\end{array} \\
& \Delta \Phi=-M \\
& \text { num.roors } \\
& \begin{array}{l}
\text { decreases } \\
\text { en end merge }
\end{array}
\end{aligned}
$$

$u=$ root_array[x.degree]
root_array[x.degree] = None
$x=\operatorname{merge}(x, u)$
root_array[x.degree] = u
roots $=$ list of non-None values from root_array
$\Phi=$ num.roots $+2 \times$ num. losers pays in advance for these "uncontrolled" irevations page 73
for each t in roots:

updated roots:

(6)

Suppose we stunt with x crees, do M menses, and end up with y trees.

def cleanup(roots):
root_array $=$ [None, None, empty array 4 size $\lfloor\lg p \mathrm{~N}\rfloor\rfloor+1$

for each tree t in roots:
$x=t$
is not None:
$u=$ root_array[x.degree]
$x=\operatorname{merge}(x, u)$
roots $=$ list of non-None values from root_array
def decreasekey $\left(v, k^{\prime}\right)$:
let n be the node where this value is stored
$n \cdot$ key $=k^{\prime}$
if n violates the heap condition:
repeat:
$p=n$.parent
remove n from p.children
insert n into the list of roots, updating minroot if necessary n. loser $=$ False
$n=p$
n neil p.
until p.loser $=$ False
p. loser = True

CASE I: no heap violation
$c=O(1) \quad \Delta \Phi=0 \Rightarrow c+\Delta \Phi=O$)

CASE II: heap violation

1. more a to rootlist $c=O(1) \quad \Delta \Phi=1$ or $\Delta \Phi=1$ if a war loser $\Rightarrow c+\Delta \Phi=O(1)$
2. Move up L losers also

$$
\begin{aligned}
& \text { ve up } L \text { losers also } \quad \Rightarrow c+\Delta \Phi=O(1) \\
& c=O(L) \quad \Delta \Phi=+L-2 L=-L \quad
\end{aligned}
$$

3. Mark $d \quad \infty$ a loser $\quad \Delta \Phi=2 \quad$ unless d is rows, $\quad \Delta \Phi=0 \quad c+\Delta \Phi=O(1)$
in both cases, total annortized cost is o(1)
popmin
had to do M merges
decreasekey
had to move
L nodes to root

QUESTION. How can decreasekey be $O(\log N)$?

Doesn't it take $O(N)$ in the first place, to find the heap node that we want to decrease?

```
def dijkstra(g, s):
    toexplore = PriorityQueue()
    toexplore.push(s, key=0)
    while not toexplore.is_empty():
    v = toexplore.popmin()
    for (w,edgecost) in v.neighbours:
        dist_w = v.distance + edgecost
        toexplore.decreasekey(w, key=dist_w)
```


Algorithms tick: fib-heap Fibonacci Heap

In this tick you will implement the Fibonacci Heap. This is an intricate data structure - for some of you, perhaps the most intricate programming you have yet programmed. If you haven't already completed the dis-set tick, that's a good warmup.

Step 1: heap operations

The first step is to implement a FibNode class to represent a node in the Fibonacci heap, and a FibHeap class to represent the entire heap. Each FibNode should store its priority key k , and the FibHeap should store a list of root nodes as well as the minroot.

