
SECTION 7.5

Three priority queues

AbstractDataType PriorityQueue
Holds a dynamic collection of items
Each item has a value v, and a key/priority k

Extract the item with the smallest key
Pair<Key, Value> popmin()

Add v to the queue, and give it key k
push(Value 𝑣, Key 𝑘)

For a value already in the queue, give it a new (lower) key
decreasekey(Value 𝑣, Key 𝑘′)

Sometimes we also include methods for
Pair<Key, Value> peekmin()
delete(Value 𝑣)
merge_with(PriorityQueue 𝑞)

page 62

0

51

6 1 6 9

12 7 3

The binary heap

The heap property
every node’s key is ≤ those of its children

page 62

The binary heap
0

51

6 1 6 9

12 7 3

3

51

6 1 6 9

12 7

3

51

6 1 6 9

12 7

0

3

1

5

6 1 6 9

12 7

1

51

6 3 6 9

12 7

popmin()

replace root bubble down bubble downextract root

3

page 62

The binary heap

push(new item)

0

1

51

6 3 6 9

12 7

0

1

51

6 6 9

12 7 3

0

1

5

6 1 6 9

12 7 3

0

51

6 1 6 9

12 7 3

1

51

6 3 6 9

12 7

bubble up bubble up bubble upappend

page 63

push(new item)

0

1

51

6 3 6 9

12 7

0

1

51

6 6 9

12 7 3

0

1

5

6 1 6 9

12 7 3

0

51

6 1 6 9

12 7 3

bubble up bubble up bubble upappend

The binary heap
1

51

6 3 6 9

12 7

decreasekey(item, new key)

page 63

0

51

6 1 6 9

12 7 3

The binary heap

SHAPE LEMMA
The height is 𝑂 log𝑁
where 𝑁 is the number of items in the heap

COMPLEXITY ANALYSIS
All operations are 𝑂(log𝑁),

page 63

Binomial trees

6

9

2

5

3

73

12

2

5

a tree of degree 0

2 two trees of degree 0
merge to give a tree of degree 1

2

5

6

9

two trees of degree 1
merge to give a tree of degree 2

two trees of degree 2
merge to give a tree of degree 3

page 63

The binomial heap
3 1

56

9

1

73

12

▪ a list of binomial trees,
at most one of each degree

▪ each tree is a heap

push(new item)

1

56

9

1

73

12

1

56

9

1

73

12

4 3

4

3merge trees

of equal degree

append

page 63

The binomial heap

decreasekey(item, new key)

2

3

1

56

9

1

7

4

3

2

3

1

56

9

1

7

4

3

bubble up

3 1

56

9

1

73

1212

page 63

The binomial heap

popmin()

3 1

56

9

1

73

12

4

3

973

12

1

73

12

5 6

9 4

3

5

1

73

124

3

5

6

9

561

1

73

12

4

3

6

9

extract min root

1

1

page 63

The binomial heap
3 1

56

9

1

73

12

SHAPE THEOREM
▪ A binomial tree of degree 𝑘 has 2𝑘 items
▪ In a binomial heap with 𝑁 items, the binary digits

of 𝑁 tell us which binomial trees are present

Also, in a binomial tree of degree 𝑘,
▪ the root has degree 𝑘
▪ its 𝑘 children are binomial trees
▪ the height is 𝑘

COMPLEXITY ANALYSIS

▪ push() is 𝑂 log𝑁
we have to merge 𝑂 log𝑁 trees

▪ decreasekey() is 𝑂 log𝑁
in the worst case we have to bubble up from the
bottom of the largest tree

▪ popmin() is 𝑂 log𝑁
scan 𝑂(log𝑁) trees; promote 𝑂 log𝑁 children;
do 𝑂(log𝑁) merges to recover the heap

page 63

popmin push decreasekey

binary heap 𝑂(log𝑁) 𝑂(log𝑁) 𝑂(log𝑁)

binomial heap 𝑂(log𝑁) 𝑂(log𝑁) 𝑂(log𝑁)

And what about
aggregate costs?

4 3 1

56

9

7

8

popmin push decreasekey

binary heap 𝑂(log𝑁) 𝑂(log𝑁) 𝑂(log𝑁)

binomial heap 𝑂(log𝑁) 𝑂(log𝑁) 𝑂(log𝑁)

And what about
aggregate costs?

1. push() a new item

1

56

9

4

3

7

8

4

3

7

8

popmin push decreasekey

binary heap 𝑂(log𝑁) 𝑂(log𝑁) 𝑂(log𝑁)

binomial heap 𝑂(log𝑁) 𝑂(log𝑁) 𝑂(log𝑁)

And what about
aggregate costs?

1. push() a new item

1

56

94

3

7

8

4

3

7

8

2

popmin push decreasekey

binary heap 𝑂(log𝑁) 𝑂(log𝑁) 𝑂(log𝑁)

binomial heap 𝑂(log𝑁) 𝑂(log𝑁) 𝑂(log𝑁)

𝑂(1) amortized

Dijsktra’s algorithm makes 𝑂(𝐸) calls
to push/decreasekey, and only 𝑂(𝑉)
calls to popmin.

QUESTION. Can we make both push
and decreasekey be 𝑂(1)?

[Ex. sheet 6 q. 2, 4]

And what about
aggregate costs?

push(new item)

3 12 3 7 9 1 6 5 1

first minitem

0 3 12 3 7 9 1 6 5 1

first minitem

0 3 12 3 7 9 1 6 5 1

first minitem

Linked-list priority queue page 64

decreasekey(item , new key)

3 12 3 7 9 1 6 5 1

first minitem

Linked-list priority queue

3 0 3 7 9 1 6 5 1

first minitem

3 0 3 7 9 1 6 5 1

first minitem

page 64

popmin()

3 12 3 7 9 1 6 5 1

first minitem

Linked-list priority queue

3 12 3 7 9 6 5 1

first minitem

3 12 3 7 9 6 5 1

first minitem

1

page 64

popmin push decreasekey

binary heap 𝑂(log𝑁) 𝑂(log𝑁) 𝑂(log𝑁)

binomial heap 𝑂(log𝑁) 𝑂(1) amort 𝑂(log𝑁)

linked list 𝑂(𝑁) 𝑂(1) 𝑂(1)

❖ Be lazy

❖ Do cleanup in batches

❖ Give your data enough structure that
you only need to touch a little bit of it

Fibonacci heap 𝑂(log𝑁) amort 𝑂(1) amort 𝑂(1) amort

but 𝑁 pushes are only 𝑂 𝑁
(see heapsort, §2.10)

page 62

SECTION 7.6

The Fibonacci Heap

push(new item)

7 1

34

6

5 7 1

34

6

5 2

M

7 1

34

6

M M

minroot

▪ store a list of trees, each a heap
▪ trees can have any shape
▪ keep track of the minroot

1
2
3
4
5
6
7
8
9

10

Maintain a list of heaps (i.e. store a pointer to the root of each heap)
roots = []

Maintain a pointer to the smallest root
minroot = None

def push(Value 𝑣, Key 𝑘):
create a new heap ℎ consisting of a single item (𝑣,𝑘)
add ℎ to the list of roots
update minroot if minroot is None or 𝑘 < minroot.key

add to list add to list

page 65

popmin()

7 1

34

6

5 2

7

6

5 2

4

6

5 2

5 2

7

3

4

6

7

3

4

6

5

2

M

M

extract min root
34

7 3

4

6 7

3

5 2

1

1

set M

12
13
14
15
16
17
18
19

def popmin():
take note of minroot.value and minroot.key
delete the minroot node, and promote its children to be roots
cleanup the roots
while there are two roots with the same degree:

merge those two roots, by making the larger root a child of the smaller
update minroot to point to the root with the smallest key
return the value and key we noted in line 13

page 65-66

decreasekey(item, new key)

1

34

6

2

57

8

1

34

6

2

7

8

1

34

67

8

7

2

1

34

6

0

8

5

3

2

0

restore heap

LAZY STRATEGY
Dump heap-violating nodes into the
root list, to be cleaned up by the next
popmin()

... but we might end up with a heap with
wide shallow trees, which will make
popmin() slow

page 67

decreasekey(item, new key)decreasekey(item, new key)

1

34

6

2

57

8

1

34

6

2

7

8

1

34

67

8

Rule 1. Lose one child, and
you’re marked a LOSER

Rule 2. Lose two children,
and you’re dumped into
the root list

7

1

34

6

0

8

5

3

2

0

restore heap

2

1

34

6

0

8

7

1

restore heap 2

1

34

6

0 1

8 disown

1

34

6

0 1

8

2

& unmark

2

page 67

4

1

5

8

4

1

5

8

4

61 58

4

61

5

4

61 8

30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

Every node will store a flag, n.loser = True / False

def decreasekey(𝑣, 𝑘′):
let 𝑛 be the node where this value is stored
𝑛.key = 𝑘′

if 𝑛 violates the heap condition:
repeat:

𝑝 = 𝑛.parent
remove 𝑛 from 𝑝.children
insert 𝑛 into the list of roots, updating minroot if necessary
𝑛.loser = False
𝑛 = 𝑝

until 𝑝.loser == False
if 𝑝 is not a root:

𝑝.loser = True

Modify popmin so that when we promote minroot’s children, we erase any loser flags

decreasekey restore heap disown 2loser disown 2loser

9 6

8

5

page 68

Sometimes it pays
to let mess build up

Your parents want
lots of grandchildren*

* and they’ll disown you if
you don’t have enough

SECTION 7.8

Amortized analysis of
the Fibonacci Heap

4

1

5

8

6

4

61

5

8

4

61 8

5

SHAPE THEOREM

Every node has degree ≤ log𝜙𝑁

COMPLEXITY ANALYSIS

In a Fibonacci heap with 𝑁 items,
using the potential function

Φ = num.roots + 2 × num.losers,

▪ push() has amortized cost 𝑂 1

▪ decreasekey() has amortized cost 𝑂(1)

▪ popmin() has amortized cost 𝑂 log𝑁

FIBONACCI HEAP
COMPLEXITY ANALYSIS

SHAPE THEOREM
The largest tree has degree ≤ log2𝑁

COMPLEXITY ANALYSIS

In a binomial heap with 𝑁 items

▪ push() is 𝑂 log𝑁

▪ decreasekey() is 𝑂 log𝑁

▪ popmin() is 𝑂 log𝑁

BINOMIAL HEAP
COMPLEXITY ANALYSIS

7
8
9

10

def push(Value 𝑣, Key 𝑘):
create a new heap ℎ consisting of a single item (𝑣,𝑘)
add ℎ to the list of roots
update minroot if minroot is None or 𝑘 < minroot.key

Φ = num.roots + 2 × num.losers page 73

32
33
34
35
36
37
38
39
40
41
42
43
44

def decreasekey(𝑣, 𝑘′):
let 𝑛 be the node where this value is stored
𝑛.key = 𝑘′

if 𝑛 violates the heap condition:
repeat:

𝑝 = 𝑛.parent
remove 𝑛 from 𝑝.children
insert 𝑛 into the list of roots, updating minroot if necessary
𝑛.loser = False
𝑛 = 𝑝

until 𝑝.loser == False
if 𝑝 is not a root:

𝑝.loser = True

d

a

c

b

loser

loser

Φ = num.roots + 2 × num.losers page 73

12
13
14
15
16
17
18
19

def popmin():
take note of minroot.value and minroot.key
delete the minroot node, and promote its children to be roots
cleanup the roots
while there are two roots with the same degree:

merge those two roots, by making the larger root a child of the smaller
update minroot to point to the root with the smallest key
return the value and key we noted in line 13

Φ = num.roots + 2 × num.losers degree ≤ log𝜙𝑁

20
21
22
23
24
25
26
27
28
29

def cleanup(roots):
root_array = [None, None,]
for each tree t in roots:

x = t
while root_array[x.degree] is not None:

u = root_array[x.degree]
root_array[x.degree] = None
x = merge(x, u)

root_array[x.degree] = u

roots = list of non-None values from root_array

page 73

20
21
22
23
24
25
26
27
28
29

def cleanup(roots):
root_array = [None, None,]
for each tree t in roots:

x = t
while root_array[x.degree] is not None:

u = root_array[x.degree]
root_array[x.degree] = None
x = merge(x, u)

root_array[x.degree] = u

roots = list of non-None values from root_array

Φ = num.roots + 2 × num.losers degree ≤ log𝜙𝑁 page 73

0 1 2 3

7 34

6

5

root_array

20
21
22
23
24
25
26
27
28
29

def cleanup(roots):
root_array = [None, None,]
for each tree t in roots:

x = t
while root_array[x.degree] is not None:

u = root_array[x.degree]
root_array[x.degree] = None
x = merge(x, u)

root_array[x.degree] = u

roots = list of non-None values from root_array

Φ = num.roots + 2 × num.losers degree ≤ log𝜙𝑁 page 73

At the end of cleanup, we want to have
≤1 tree of any given degree.

SHAPE THEOREM
Every node has degree ≤ log𝜙𝑁

To fit them these trees, we’ll need
an array of size ≤ log𝜙𝑁 + 1

0 1 2 3

7 34

6

5

root_array

for each 𝑡 in roots:

7

3

4

6

7

3

updated roots:

20
21
22
23
24
25
26
27
28
29

def cleanup(roots):
root_array = [None, None,]
for each tree t in roots:

x = t
while root_array[x.degree] is not None:

u = root_array[x.degree]
root_array[x.degree] = None
x = merge(x, u)

root_array[x.degree] = u

roots = list of non-None values from root_array

Φ = num.roots + 2 × num.losers degree ≤ log𝜙𝑁 page 73

Φ = num.roots + 2 × num.losers

popmin

decreasekey

page 73

def dijkstra(g, 𝑠):
...
toexplore = PriorityQueue()
toexplore.push(𝑠, key=0)

while not toexplore.is_empty():
𝑣 = toexplore.popmin()
for (𝑤,edgecost) in 𝑣.neighbours:

dist_w = 𝑣.distance + edgecost
...
toexplore.decreasekey(𝑤, key=dist_w)

𝑣

𝑤

heap node
containing 𝑤

parent node
in heap

children
in heap

page 69

QUESTION. How can decreasekey be
𝑂 log𝑁 ?

Doesn’t it take 𝑂(𝑁) in the first place,
to find the heap node that we want to
decrease?

def dijkstra(g, 𝑠):
...
toexplore = PriorityQueue()
toexplore.push(𝑠, key=0)

while not toexplore.is_empty():
𝑣 = toexplore.popmin()
for (𝑤,edgecost) in 𝑣.neighbours:

dist_w = 𝑣.distance + edgecost
...
toexplore.decreasekey(𝑤, key=dist_w)

𝑣

𝑤

heap node
containing 𝑤

parent node
in heap

children
in heap

page 69

QUESTION. How can decreasekey be
𝑂 log𝑁 ?

Doesn’t it take 𝑂(𝑁) in the first place,
to find the heap node that we want to
decrease?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40

