For advanced data structures like a Priority Queue

* We should care about the aggregate cost of a sequence of operations
* This might not be as bad as the per-operation worst cases suggest
* Amortized costs are a handy way to reason about aggregate costs

For advanced data structures like a Priority Queue
\& We should care about the aggregate cost of a sequence of operations
\& This might not be as bad as the per-operation worst cases suggest
\& Amortized costs are a handy way to reason about aggregate costs

> I've designed a data structure that supports push at amortized cost $O(1)$ and popmin at amortized cost $O(\log M$, if the number of items never exceeds N.

Ex. sheet 6 q. 6 asks you to think through why this is
a sensible restriction

For any sequence of $m_{1} \times$ push and $\overbrace{2} \times$ popmin, applied to an initially empty data structure,
aggregate aggregate
true \leq amortized $\leq m_{1} O(1)+m_{2} O(\log N)=O\left(m_{1}+m_{2} \log N\right)$
cost
cost

SECTION 7.4

Potential functions

or, how on earth do we come up with useful amortized costs?

class MinList<T>:

```
def append(T value):
    # append a new value
def T min():
    # caches the result, so we
    # only need to iterate over
    # newly-appended items
```


append	append	min	append	append	append	min	
c_{A}	c_{A}	$c_{M}+2 c_{I}$	c_{A}	c_{A}	c_{A}	$c_{M}+3 c_{I}$	aggregate true cost

* Suppose we can store 'credit' in the data structure, and operations can either store or release credit * Let the 'accounting' cost of an operation be: $\quad\binom{$ accounting }{ cost }$=\binom{$ true }{ cost }$+\binom{$ credit }{ it stores }$-\binom{$ credit }{ it releases }
* Let's 'pay ahead' for the potentially-costly operations

```
class MinList<T>:
```

```
    def append(T value):
```

 def append(T value):
 # append a new value
 # append a new value
 def T min():
 def T min():
 # caches the result, so we
 # caches the result, so we
 # only need to iterate over
 # only need to iterate over
 # newly-appended items
    ```
        # newly-appended items
```


stove $l \neq=r_{I}$

* Suppose we can store 'credit' in the data structure, and operations can either store or release credit * Let the 'accounting' cost of an operation be: $\quad\binom{$ accounting }{ cost }$=\binom{$ true }{ cost }$+\binom{$ credit }{ it stores }$-\binom{$ credit }{ it releases }
\& Let's 'pay ahead' for the potentially-costly operations

```
class MinList<T>:
    def append(T value):
        # append a new value
    def T min():
        # caches the result, so we
        # only need to iterate over
        # newly-appended items
```

These are valid amortized costs i.e. for any sequence of operations on an initially-empty data structure

$$
\begin{array}{cc}
\text { aggregate } & \text { aggregate } \\
\text { true } & \leq \begin{array}{c}
\text { amortized } \\
\text { cost }
\end{array} \\
\text { cost }
\end{array}
$$

Let Ω be the set of all states our data structure might be in.
A function $\Phi: \Omega \rightarrow \mathbb{R}$ is called a potential function if

$$
\Phi(\mathcal{S}) \geq 0 \quad \text { for all } \mathcal{S} \in \Omega
$$

$\longrightarrow \Phi($ empty $)=0$
stare before stare fore
I - bank balance
$=$ total amount of credit stored
in the data struetrove.

For an operation $\mathcal{S}_{\text {ante }} \rightarrow \mathcal{S}_{\text {post }}$ with true cost c, define the accounting cost to be

$$
c^{\prime}=c+\Phi\left(\mathcal{S}_{\text {post }}\right)-\Phi\left(\mathcal{S}_{\text {ante }}\right)
$$

THE 'POTENTIAL' THEOREM: These are valid amortized costs.
 aggregate
accounting $=c_{1}^{\prime}+c_{2}^{\prime}+\cdots+c_{m}^{\prime}$

$$
\begin{aligned}
& \begin{aligned}
=-\Phi\left(\mathcal{S}_{0}\right)+c_{1} & +\Phi\left(\delta_{1}\right) \\
& -\Phi\left(p_{1}\right)+c_{2}+\Phi\left(\delta_{2}\right)
\end{aligned} \\
& \cdots-\Phi(\delta / m-1)+c_{m}+\Phi\left(\delta_{m}\right) \\
& =-\Phi\left(88_{0}\right)+\underbrace{c_{1}+\cdots+c_{m}}_{\text {agp.true cost }}+\Phi\left(\delta_{m}\right) \\
& \geqslant=\begin{array}{c}
\text { aggregate } \\
\text { true cost }
\end{array}
\end{aligned}
$$

cost

Example
Consider a dynamically-sized array to which we append items. It starts with capacity 1, and doubles its capacity whenever it becomes full.
Suppose the cost of writing an item is 1 , and the cost of doubling capacity from m to $2 m$ (and copying across the existing items) is κm.

Show that the amortized cost of append is $O(1)$.
$\Phi=$ \# rems added since last darling $x \geq K$
 we've stored so far ($2 €$) to pay for the doubling (cost 4κ). So we want $1 €=2 \kappa$.

$$
\begin{aligned}
& \text { initially empty } \\
& \square \Phi=0 \\
& c=1 \quad \begin{array}{l}
\square \\
\text { append() am.cose } c^{\prime}=c+\Delta \Phi=1+2 k \\
B \\
c
\end{array} \quad 2 k \\
& c=K+1 \text { append(), requires doubling } c^{\prime}=c+\Delta I=1+k
\end{aligned}
$$

$$
\square \Phi \Phi=2 k
$$

$c=2 k+1$ append(), requires doubling $c^{\prime}=1+2 k$

$$
\Phi=2 k
$$

$$
c^{\prime}=2 k+1
$$

$$
\Phi=4 k
$$

$$
\dot{c}=4 k+1-2 k=1+2 t
$$

Am cost is always $\leq 1+2 k=O(1)$

Example (sloppy style)
 page 58

Consider a dynamically-sized array to which we append items. It starts with capacity 1 , and doubles its capacity
whenever it becomes full.
Suppose the cost of writing an item is $O(1)$, and the cost of doubling capacity from m to $2 m$ (and copying across the existing items) is $O(\mathrm{~m})$.
Show that the amortized cost of append is $O(1)$.
page 59

```
def append(T value):
    # append a new value
def T min():
    # return the smallest
    # (without removing it)
```

QUESTION. What potential function might we use, to show that append and min both have amortized cost $O(1)$?

$L=\sharp$ items added since last min $\Phi=L$

```
Stage 0
```

- Use a linked list
- min iterates over the entire
list

Stage 1

- Use a linked list
- min caches its result, so that next time it only needs to iterate over newer values

Stage 2

- Use a linked list
- Store the current minimum, and update it on every append

```
Stage 3
- min caches its result,
    the same as Stage 1
- ... but we argue it's just as
    good as Stage 2
```


For one-shot algorithms such as sorting:
After we show that our algorithm is $O(n \log n)$, it's good manners to also show that the worst case is $\Omega(n \log n)$.
$\exists \kappa>0$ such that, for all sufficiently large n, $\operatorname{cost}_{n} \leq \kappa n \log n$
$\exists \delta>0$ and a sequence of example inputs with increasing n such that $\operatorname{cost}_{n} \geq \delta n \log n$
i.e. design a family of example inputs of increasing size n where

$$
\operatorname{cost}_{n}=\Omega(n \log n)
$$

The worstcase cost is CLEARANCE 50% OFF

and, if we can't find matching $O-\Omega$ bounds, then maybe our O bound isn't as good as it could be.

For advanced data structures:
After we find big-O upper bounds for amortized costs, it's good manners to show matching worst-case performance.

I've designed a data structure that supports push at amortized cost $O(1)$ and popmin at amortized cost $O(\log M$, if the number of items never exceeds N.
$\exists \kappa>0$ such that, for all sufficiently large N, and any operation-sequence s having $m_{1} \times$ push $+m_{2} \times$ popmin such that \#items is always $\leq N$, $\operatorname{cost}_{s} \leq \kappa\left(m_{1}+m_{2} \log N\right)$

Design a family of operation-sequences $s(N)$ having $m_{1}(N) \times$ push $+m_{2}(N) \times$ popmin such that \#items is always $\leq N$, and

$$
\operatorname{cost}_{s(N)}=\Omega\left(m_{1}(N)+m_{2}(N) \log N\right)
$$

and, if we can't find matching $O-\Omega$ bounds, then maybe our amortized costs aren't as good as they could be. [See ex.sheet 6 q.7]

Fully Connected 2023

Schedule

Thu Mar 162023 at 10:00 am to 05:30 pm UTC+00:00

Location

Computer Laboratory, University of Cambridge | Cambridge, EN

Interested in ML research? Wondering what that ChatGPT thing is all about? Want a free lunch?
Come to the CL!

About this Event

Interested in ML research but don't know where to start? Looking for a summer research project?
Wondering what that ChatGPT thing is all about? Want a free lunch? Come along to Fully
Connected, Cambridge's flagship machine learning research event for undergraduates!

