For advanced data structures like a Priority Queue
¢ We should care about the aggregate cost of a sequence of operations
¢ This might not be as bad as the per-operation worst cases suggest

** Amortized costs are a handy way to reason about aggregate costs
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** Amortized costs are a handy way to reason about aggregate costs
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"'ve desi gned a data structure that

supports push at amortized cost

0(1) and popmin at amortized cost o Sheot € o6 ook t
- - X. Shee q.6 dasks you to

O(log N), if the number of items think through why this is

:never exceeds N, ) a sensible restriction

For any sequence of m; X push and ", X popmin,
applied to an initially empty data structure,

aggregate  aggregate
true < amortized < my; O(1) +m, O(logN) = O(m; + m,logN)
cost cost



SECTION 7.4
Potential functions

or, how on earth do we come up with
useful amortized costs?



class MinList<T>:

def append(T value):

def T min():
append append min
Cy Cy Cm + 2C1

2. 2.
% 3
append append append min
Cy Cy Cy Cm + 3CI

aggregate
true cost

page 57



*»* Suppose we can store ‘credit’ in the data structure, and operations can either store or release credit

accounting) _ (true) +( credit ) _( credit )
cost cost it stores it releases

** Let the ‘accounting’ cost of an operation be: (

s Let’s ‘pay ahead’ for the potentially-costly operations
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*»* Suppose we can store ‘credit’ in the data structure, and operations can either store or release credit

accounting) _ (true) +( credit ) _( credit )

** Let the ‘accounting’ cost of an operation be: ( . :
cost cost it stores it releases

s Let’s ‘pay ahead’ for the potentially-costly operations

These are valid amortized costs

i.e. for any sequence of operations on an
initially-empty data structure

aggregate aggregate
true < amortized
cost cost




Let L) be the set of all states our data structure might be in. page 57

A function @: () — R is called a potential function if 3 - bank badamiz page 61
®(§) =0 forall S e 2if <poveoh
—»d(empty) =0 Z fotad amewwt I credib s
Stase before_ Stose ofto” m Fag daka sewchvore,
For an operation S,,te = Spost With true cost ¢, define the accounting cost to be
c'=c+ CI)(‘S‘post) - CI)(‘S‘ante)

THE ‘POTENTIAL THEOREM: These are valid amortized costs.
ety
” C1 Co Cm

PROOF: Consider an arbitrary sequence of operations, starting from empty: S;—8§, — 8, —» -+ — 3§,
A

aggregate
accounting =c; + ¢, + -+ ¢y,
cost
= —®(Sp) + ¢; + P(§y)
—®(p;) tcy + c13(7/2)
(o) T q)%—l) +Cp t+ CI)(Sm)
= — Q) +cy + -+ Oy + D(Spy)
R TY. £¥ug Cosé
. o Aaggregate

frue cost



Example

Consider a dynamically-sized array to which we append
items. It starts with capacity 1, and doubles its capacity
whenever it becomes full.

Suppose the cost of writing an item is 1, and the cost of
doubling capacity from m to 2m (and copying across the
existing items) is xm. O (m)

————

Show that the amortized cost of append is O(1).

= Them¢ ad o
P f;'ma Ia-l(--b/‘% ¥ 2K

we’ve stored so far (2€)
to pay for the doubling
(cost 4k). So we want
1€=2k.

We want the coins that _/ —
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initially empty
£-9
¢ =! append() am.coe ¢'= C+ A = |+ 2k
€ § =2k
¢=K+| append(), requiresdoubling ¢’ =¢c+ AT = IFF
e F:=2
¢=2>k~\ append(), requires doubling ¢’ = |+ 2K
€ -2k
!
¢\ append() ¢'=s 2kl
e | @ \r:‘fk
¢z wrcal append(), requires goubling e= Wka\ -2k = 142F
(3 t:zk

e=! append() ¢’z 142k

2@ ¥: 4x
4 2k
¢|le & d=-¢K

= append() .°*

Am com i .vlwoa,g L+ 2 = O(l)



Example (sloppy style) page 53
Consider a dynamically-sized array to which we append
items. It starts with capacity 1, and doubles its capacity
whenever it becomes full.

Suppose the cost of writing an item is O(1), and the cost of
doubling capacity from m to 2m (and copying across the
existing items) is O (m).

Show that the amortized cost of append is O(1).




class MinList<T>: page 59

def append(T value):
# append a new value

def T min():
# return the smallest
# (without removing it)

M;J\

win \ Stage 1

= Use a linked list

= min caches its result, so that
next time it only needs to
iterate over newer values

I
QUESTION. What potential function might :D Qgg
we use, to show that append and min both L
have amortized cost 0(1)?

A

L= f irem adoded suce loat win

&
v

L



For one-shot algorithms such as sorting:

After we show that our algorithm is O(nlogn),
it’s good manners to also show that
the worst case is A(nlogn).

dx > 0 such that, for all
sufficiently large n,
cost, < knlogn

16 > 0and a

sequence of example

inputs with increasing

n such that

cost, = o nlogn
i.e. design a family of
example inputs of
increasing size n where
cost, = Q(nlogn)

and, if we can’t find matching 0-()
bounds, then maybe our O bound isn’t
as good as it could be.



age 59
For advanced data structures: pag

I've designed a data structure that
supports push at amortized cost
0(1) and popmin at amortized cost
O(log M), if the number of items
never exceeds M,

After we find big-O upper bounds for
amortized costs, it’s good mananers to show
matching worst-case perfor

dx > 0 such that, for all for ary ey ‘f m, vah

sufficiently large N, and any My pm

operation-sequence s having

m, X push + m, X popmin qf-'“““"m gt

such that #items is always < N, £e11 M)
2 M o(.)-{m,()”?

costg < k (my + m, logN) '

Design a family of operation-sequences s(N)
having m{(N) X push + m,(N) X popmin
such that #items is always < N, and
costgyy = Q(my(N) + my(N)logN)

S~

and, if we can’t find matching 0-Q)
bounds, then maybe our amortized costs
aren’t as good as they could be.

[See ex.sheet 6 q.7]
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