SECTION 7/
Advanced data structures

SECTION 7.1

Aggregate analysis

-

‘e i . W N
e _ R
N S et R A,

B R TR \L LR
s en -./m,// ’/’/ fwy/-/uw - vll.oli.t/...
. aNN .3 é[i e !
o ™ Wt~ ne
AR NN

M
N

L fez

o N

~N -

I'Raym

st Three WiFi Call = 14:48 @ 4 96% = o' Three WiFi Call = 14:48 @ 7 96%

Analysis Analysis
Time min/km Time min/km
151
3.
10+
2,
5,
“.
01 | . . | 01 | : ‘ , .
0.0 2.5 5.0 7.5 10.0 0.0 2.5 5.0 7.5 10.0
10km 10km

P ® @®© & [P ® @® & [

Explore Record Profile Training Explore Record Profile Training

page 51
Running time of each operation,
in a run of Dijkstra’s algorithm

M popmin M push decreasekey

with a binary heap
Don’t worry about the

II I I I I worst-case cost of each
H =N

individual operation.

time

Worry about the

with a binomial heap
worst-case aggregate cost
I I of a
e -I 1 sequence of operations.

time

total time = O(V) X Cpopmin
+0(E) X Cpush/dec.key

page 51

The worst case for a
sequence of operations
might not be as bad as the
sum of per-op. worst cases.

(This is the hallmark of an
advanced data structure.)

Adding an item
to a binomial heap

page 51

The worst case for a
sequence of operations
might not be as bad as the
sum of per-op. worst cases.

(This is the hallmark of an
advanced data structure.)

Adding an item
to a binomial heap

page 51

The worst case for a
sequence of operations
might not be as bad as the
sum of per-op. worst cases.

(This is the hallmark of an
advanced data structure.)

Adding a second item
to a binomial heap

page 51

The worst case for a
sequence of operations
might not be as bad as the
sum of per-op. worst cases.

(This is the hallmark of an
advanced data structure.)

Analysis of running time
for recursive dfs

How can we reason about

aggregate COStS? 1 # visit all vertices reachable from s
> def dfs_recurse(g, s):
Just be clever and Lk, J o)
work hard Lo e
; def visit(v): run ok most once)
: : 8 v.visited = True — (_ etex, o
Use an accounting trick S
called amortized costs ! e]— o(E)

SECTION 7.2, 7.3
Amortized costs

page 53

class MinList<T>: Stage O
def append(T value): afP'\J '3‘0(') » Use a linked list
append a new value min 5 O() = min iterates over the entire
def flush(): list
empty the list
def foreach(f): i vl

Stage 1

J /
do f(x) for each item DDDD . _
def T min(): < lﬂD = Use alinked list

return the smallest “fr"“ 5 aCr) " min cachesits result, so that
- - i next time it only needs to
(without removing it) min fs O("‘) Yy

iterate over newer values

Stage 2
oppnd 1 o(') = Use a linked list
min s 001) = Store the current minimum,

and update it on every append

Stage 3

= min caches its result,
the same as Stage 1

= ... but weargueit’sjust as
good as Stage 2

page 53

N
append append append min
We Hhe Somng
Carp QPP (qPP Cl + N(l ?“6
oMy for
atcvmul'\““fd‘”é' d\ffﬂrm oYt
. whetther we o dd
append append append min £r e -
S
(p+ |2 | |G+ | |CptS| |G of amoctized " @S .
- —
Stage 3

= min caches its result,
the same as Stage 1

= ... but weargueit’sjust as
good as Stage 2

page 55

append<, append €z append €3 min Cs

true cost of operations

']] [U '
(, ‘_-C“ C.“'(z 54.4"{%(3 L (, 4_(1(-.‘-‘3(2‘?(3* Ce &£ 6 'l-(z' + (3 4+,

append l,' append (,' append (3' min (.{

amortized cost of operations

FUNDAMENTAL INEQUALITY OF AMORTIZATION

Let there be a sequence of m operations, applied to an initially-
empty data structure, whose true costs are ¢4, C5, ..., ;. SUppPOSE
someone invents ¢y, €3, ..., C;,. These are called amortized costs if

¢+t <c+-+c¢ forall j<m

f’" AN/ seqgran& s s .

page 55

/'ve desi gned a data structure that)
supports push at amortized cost
0(1) and popmin at amortized cost
O(log M), where the number of

t items never exceeds N)

This makes it easy for the user to reason about aggregate costs.

For any sequence of m; X push and m, X popmin,
applied to an initially empty data structure,

worst—case
aggregate cost < my; 0(1) + my O(logN) = 0(m,; + m,logN)

i.e. there exist Ny and k > 0 such that,
forany N = N, and for any sequence of of m; X push and m, X popmin
on a data structure that starts empty and always has < N elements,

worst-case

aggregate cost = Kk(my +m;logN)

SECTION 7.4
How on earth are we meant to come

up with useful amortized costs?

SECTION 7.5
Please review the Binary and Binomial

heaps, before Wednesday’s lecture.

