
SECTION 7

Advanced data structures

SECTION 7.1

Aggregate analysis

Share your run

Time min/km

Total Distance 10km

Moving Time 58:27

Share your run

Time min/km

Total Distance 10km

Moving Time 53:16

decreasekeypushpopmin

time

Running time of each operation,
in a run of Dijkstra’s algorithm

with a binary heap

time

with a binomial heap

total time = 𝑂 𝑉 × 𝑐popmin

+𝑂 𝐸 × 𝑐push/dec.key

Don’t worry about the
worst-case cost of each
individual operation.

Worry about the
worst-case aggregate cost
of a
sequence of operations.

page 51

The worst case for a
sequence of operations
might not be as bad as the
sum of per-op. worst cases.

(This is the hallmark of an
advanced data structure.)

page 51

1. push() a new item

4 3 1

56

9

7

8

Adding an item
to a binomial heap The worst case for a

sequence of operations
might not be as bad as the
sum of per-op. worst cases.

(This is the hallmark of an
advanced data structure.)

page 51

1. push() a new item

1

56

9

4

3

7

8

4

3

7

8

Adding an item
to a binomial heap The worst case for a

sequence of operations
might not be as bad as the
sum of per-op. worst cases.

(This is the hallmark of an
advanced data structure.)

page 51

1. push() a new item

1

56

94

3

7

8

4

3

7

8

Adding a second item
to a binomial heap

2

The worst case for a
sequence of operations
might not be as bad as the
sum of per-op. worst cases.

(This is the hallmark of an
advanced data structure.)

page 51

How can we reason about
aggregate costs?

❖ Just be clever and
work hard

❖ Use an accounting trick
called amortized costs

SECTION 7.2, 7.3

Amortized costs

class MinList<T>:

def append(T value):
append a new value

def flush():
empty the list

def foreach(f):
do f(x) for each item

def T min():
return the smallest
(without removing it)

Stage 0

▪ Use a linked list
▪ min iterates over the entire

list

Stage 1

▪ Use a linked list
▪ min caches its result, so that

next time it only needs to
iterate over newer values

Stage 2

▪ Use a linked list
▪ Store the current minimum,

and update it on every append

Stage 3

▪ min caches its result,
the same as Stage 1

▪ ... but we argue it’s just as
good as Stage 2

page 53

append append append min

Stage 3

▪ min caches its result,
the same as Stage 1

▪ ... but we argue it’s just as
good as Stage 2

append append append min

page 53

append append append min

append append append min

true cost of operations

amortized cost of operations

FUNDAMENTAL INEQUALITY OF AMORTIZATION
Let there be a sequence of 𝑚 operations, applied to an initially-
empty data structure, whose true costs are 𝑐1, 𝑐2, … , 𝑐𝑚. Suppose
someone invents 𝑐1

′ , 𝑐2
′ , … , 𝑐𝑚

′ . These are called amortized costs if

𝑐1 + ⋯ + 𝑐𝑗 ≤ 𝑐1
′ + ⋯ + 𝑐𝑗

′ for all 𝑗 ≤ 𝑚

page 55

I’ve designed a data structure that
supports push at amortized cost
O(1) and popmin at amortized cost
O(log N), where the number of
items never exceeds N.

For any sequence of 𝑚1 × push and 𝑚2 × popmin,
applied to an initially empty data structure,

worst−case
aggregate cost

≤ 𝑚1 𝑂 1 + 𝑚2 𝑂 log 𝑁 = 𝑂(𝑚1 + 𝑚2 log 𝑁)

i.e. there exist 𝑁0 and 𝜅 > 0 such that,
for any 𝑁 ≥ 𝑁0, and for any sequence of of 𝑚1 × push and 𝑚2 × popmin
on a data structure that starts empty and always has ≤ 𝑁 elements,

worst−case
aggregate cost

≤ 𝜅(𝑚1 + 𝑚2 log 𝑁)

page 55

This makes it easy for the user to reason about aggregate costs.

SECTION 7.4

How on earth are we meant to come
up with useful amortized costs?

SECTION 7.5

Please review the Binary and Binomial
heaps, before Wednesday’s lecture.

