SECTION 7 Advanced data structures SECTION 7.1

Aggregate analysis

Running time of each operation, in a run of Dijkstra's algorithm

popmin push decreasekey

with a binary heap

with a binary heap

time

with a binomial heap

total time = $O(V) \times c_{\text{popmin}}$ + $O(E) \times c_{\text{push/dec.key}}$ Don't worry about the worst-case cost of each individual operation.

Worry about the worst-case aggregate cost of a sequence of operations.

page 51

Adding an item to a binomial heap

Adding an item to a binomial heap

page 51

Adding a second item to a binomial heap

Norst-cape cost of add is O(log n) n= # items is heap. Norst-cose cost of two adds is O(1+log n)

How can we reason about aggregate costs?

- Just be clever and work hard
- Use an accounting trick called *amortized costs*

Analysis of running time for recursive <u>dfs</u>

SECTION 7.2, 7.3 Amortized costs

class MinList<T>:

def append(T value):
 # append a new value

def flush(): # empty the list

def foreach(f):
 # do f(x) for each item

def T min(): 4----

- # return the smallest
 # (without removing it
- # (without removing it)

ODDD

and is O(1)

min is O(n)

oppend is O(1) min is O(1)

Stage 0

Use a linked list

 min iterates over the entire list

Stage 1

- Use a linked list
- min caches its result, so that next time it only needs to iterate over newer values

Stage 2

- Use a linked list
- Store the current minimum, and update it on every append

Stage 3

- min caches its result, the same as Stage 1
- ... but we argue it's just as good as Stage 2

We get the same anpuer for aggregate cost whether ne add true costs or "amortized" costs.

Stage 3

- min caches its result, the same as Stage 1
- ... but we argue it's just as good as Stage 2

FUNDAMENTAL INEQUALITY OF AMORTIZATION

Let there be a sequence of m operations, applied to an initiallyempty data structure, whose true costs are $c_1, c_2, ..., c_m$. Suppose someone invents $c'_1, c'_2, ..., c'_m$. These are called **amortized costs** if

$$c_1 + \dots + c_j \le c'_1 + \dots + c'_j$$
 for all $j \le m$
a generate time cost agg amortized
of a sequence of ops those operations

for AN' sequence of ops.

I've designed a data structure that supports push at amortized cost O(1) and popmin at amortized cost O(log M), where the number of items never exceeds N.

This makes it easy for the user to reason about aggregate costs.

For any sequence of $m_1 \times \text{push}$ and $m_2 \times \text{popmin}$, applied to an initially empty data structure,

worst-case aggregate cost $\leq m_1 O(1) + m_2 O(\log N) = O(m_1 + m_2 \log N)$

i.e. there exist N_0 and $\kappa > 0$ such that, for any $N \ge N_0$, and for any sequence of of $m_1 \times \text{push}$ and $m_2 \times \text{popmin}$ on a data structure that starts empty and always has $\le N$ elements,

worst-case aggregate cost $\leq \kappa(m_1 + m_2 \log N)$

SECTION 7.4 How on earth are we meant to come up with useful amortized costs?

SECTION 7.5 *Please review the Binary and Binomial heaps, before Wednesday's lecture.*