
SECTION 7

Advanced data structures

SECTION 7.1

Aggregate analysis





Share your run

Time min/km

Total Distance 10km

Moving Time 58:27

Share your run

Time min/km

Total Distance 10km

Moving Time 53:16



decreasekeypushpopmin

time

Running time of each operation, 
in a run of Dijkstra’s algorithm

with a binary heap

time

with a binomial heap

total time = 𝑂 𝑉 × 𝑐popmin

+𝑂 𝐸 × 𝑐push/dec.key

Don’t worry about the 
worst-case cost of each 
individual operation.

Worry about the 
worst-case aggregate cost 
of a 
sequence of operations.
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The worst case for a 
sequence of operations 
might not be as bad as the 
sum of per-op. worst cases.

(This is the hallmark of an 
advanced data structure.)
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1. push() a new item
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Adding an item 
to a binomial heap The worst case for a 

sequence of operations 
might not be as bad as the 
sum of per-op. worst cases.
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1. push() a new item
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Adding a second item
to a binomial heap

2

The worst case for a 
sequence of operations 
might not be as bad as the 
sum of per-op. worst cases.

(This is the hallmark of an 
advanced data structure.)
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How can we reason about 
aggregate costs?

❖ Just be clever and 
work hard

❖ Use an accounting trick 
called amortized costs



SECTION 7.2, 7.3

Amortized costs



class MinList<T>:

def append(T value): 
# append a new value

def flush():
# empty the list

def foreach(f):
# do f(x) for each item

def T min():
# return the smallest
# (without removing it)

Stage 0

▪ Use a linked list
▪ min iterates over the entire 

list

Stage 1

▪ Use a linked list
▪ min caches its result, so that 

next time it only needs to 
iterate over newer values

Stage 2

▪ Use a linked list
▪ Store the current minimum, 

and update it on every append

Stage 3

▪ min caches its result, 
the same as Stage 1

▪ ... but we argue it’s just as 
good as Stage 2
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append append append min

Stage 3

▪ min caches its result, 
the same as Stage 1

▪ ... but we argue it’s just as 
good as Stage 2

append append append min
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append append append min

append append append min

true cost of operations

amortized cost of operations

FUNDAMENTAL INEQUALITY OF AMORTIZATION
Let there be a sequence of 𝑚 operations, applied to an initially-
empty data structure, whose true costs are 𝑐1, 𝑐2, … , 𝑐𝑚. Suppose 
someone invents 𝑐1

′ , 𝑐2
′ , … , 𝑐𝑚

′ . These are called amortized costs if

𝑐1 + ⋯ + 𝑐𝑗 ≤ 𝑐1
′ + ⋯ + 𝑐𝑗

′ for all 𝑗 ≤ 𝑚
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I’ve designed a data structure that 
supports push at amortized cost 
O(1) and popmin at amortized cost 
O(log N), where the number of 
items never exceeds N.

For any sequence of 𝑚1 × push and 𝑚2 × popmin, 
applied to an initially empty data structure,

worst−case
aggregate cost

≤ 𝑚1 𝑂 1 + 𝑚2 𝑂 log 𝑁 = 𝑂(𝑚1 + 𝑚2 log 𝑁)

i.e. there exist 𝑁0 and 𝜅 > 0 such that, 
for any 𝑁 ≥ 𝑁0, and for any sequence of of 𝑚1 × push and 𝑚2 × popmin
on a data structure that starts empty and always has ≤ 𝑁 elements,

worst−case
aggregate cost

≤ 𝜅(𝑚1 + 𝑚2 log 𝑁)
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This makes it easy for the user to reason about aggregate costs.



SECTION 7.4

How on earth are we meant to come 
up with useful amortized costs?

SECTION 7.5

Please review the Binary and Binomial 
heaps, before Wednesday’s lecture.


