Example sheet 4

Graphs and path finding
Algorithms—DIW#*-2022/2023

Question 6. Modify bfs_path(g, s,t) to find all shortest paths from s to t. [There is a tester, linked to on the course

website, for you to check your code. |

v = O X
&9 Algorithms tick bfs-all x +

QL 09D HMm»O@ :
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& > C @ cdcamacuk/teaching/2223/Algorithm2/ticks/bfs-all.html

Algorithms tick: bfs-all
Find All Shortest Paths

Breadth-first search can be used to find a shortest path between a pair of vertices.
Modify the standard bfs_path algorithm so that it returns all shortest paths.

Please submit a source file bfs_all.py on Moodle. It should implement a function

shortest_paths(g, s, t)

# Find all shortest paths from s to t
# Return a Llist of paths, each path a List of vertices starting with s and

L | g

The graph g is stored as an adjacency dictionary, forexample g = {0:{1,2}, 1:{},
2:{1,0}}. It has a key for every vertex, and the corresponding value is the set of that

vertex’s neighbours.
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Write an amendment to the classic breadth
first search algorithm to return all shortest
paths on a graph where all paths have equal
weight. Ensure that your algorithm can cope
with cycles. Ensure you algorithm can cope
with the case where there is no path.
Implement this in python. The graph will

be stored as a dictionary of sets.




def all_shortest_paths(g, s, t):
distance = {v: float('inf') for v in g}
distancels]| = 0
visited = {v: False for v in g}
paths = {v: [] for v in g}
paths[s] = [[s]]
queue = deque([s])

To modify the classic Breadth Fi
on a graph where all paths have
version of Dijkstra's algorithm. T
Algorithm," and it is a modificat
graphs with cycles.
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while queue:
v = queue.popleft()
if v == t:
return paths[t]
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for w in glv]:
if not visited[w]:
new_dist = distancel[v] + 1
if new_dist <= distancelw]:
distance[w] = new_dist
queue. append(w)
if new_dist == distancel[w]:
for path in paths[v]:
paths[w].append(path + [w])

the graph. We can achieve this
vertex to a list of all possible shc
vertex.
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Here is the Python implementat
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visited(v] = True

w
w

return []
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Using thorough mathematical language and sound reasoning, prove both that your algorithm terminate, and
produces the correct result.

To prove that the All Shortest Paths Algorithm terminates, we can use the fact that the algorithm is based on
Breadth First Search (BFS), which is a well-known algorithm that always terminates on finite graphs. In BFS, each
vertex is visited at most once, and the algorithm terminates when all reachable vertices have been visited. Since
the All Shortest Paths Algorithm is a modification of BFS, it also terminates on finite graphs.

To prove that the All Shortest Paths Algorithm produces the correct result, we need to show that it computes all
possible shortest paths from the starting vertex to each of the other vertices in the graph.

Let P(u, v) be the set of all possible shortest paths from u to v. We want to show that the paths computed by
the algorithm all_shortest_paths(g,s,t) are exactly P(s, t) for any pair of vertices (s, t).

We can prove this by induction on the number of vertices in the graph. Let g = (I/, E') be a graph with n vertices,
and let s and t be two vertices in g.

Base case: If 1 = 1, then s and ¢ are the same vertex, and the only possible path is the empty path. The
algorithm correctly returns the empty path.

Please finish the proof
of the other n — 1 vertices In g.

icthcBiois ha- s iRt Brepmputes the cor et disanes & by alRdiRB N NaRIP4rtdR & ahlisERilaws fromathe
fpct.thatb R AlgPI LR RASEIRNBESHvHRFEsaMRtes HisutRO HifToReih dram it faprdrdrshRble Me Bfthe

RIESVG! comMerdises dex v in g', where v is not equal to s or t. We need to show that the algorithm computes all
possible shortest paths from s to v.

Case 1: v is not reachable from s in g. In this case, the algorithm correctly returns an empty list, since there is no
nath from s to 17



CLRS3 [emma 24.15 (used in Bellman-Ford). Consider a weighted directed
graph. Consider any shortest path from s to ¢,
S=Vyg—>V = >V, =L
Suppose we initialize the data structure by
v.dist = oo for all vertices other than s

s.dist=0
and then we perform a sequence of relaxation steps that includes, in order,
relaxing vy — v4, then v; — v,, then ... then v, _; — v,. After these
relaxations, and at all times thereafter, v, .dist = distance(s to vy).

We'll prove by induction that, after the ith edge has been relaxed,
v;.dist = distance(s to v;)

BASE CASE i = 0: Note that s = vy. We initialized s.dist = 0, and
distance(s to s) = 0, so the induction hypothesis is true.

INDUCTION STEP: ...
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give the shortest possible prompt that if given
back to you would mean you generate
equivalent code to the following:

AN NY

from collections import deque

def shortest_paths(g, s, t):
queue = deque([s])
nodes = {}




give the shortest possible prompt that if given back to you would mean you generate equivalent code to the
following: [...]

Write code to find the shortest paths from node s to node t in a graph using Breadth-First Search (BFS) and

backtracking. The code should use a deque from the collections module and define a Node class with a
constructor that takes a vertex and distance. The Node class should have a backpointers list to keep track of the

paths. The shortest_paths function should take a graph g, source node s, and target node ¢ as arguments, and
return a list of all the shortest paths from s to t.




SECTION 6.4

Matchings



= A bipartite graph is an undirected graph in which
the vertices are split into two sets, and all edges
go between these sets

= A matching in a bipartite graph is a selection of
edges, such that no vertex is connected to more
than one of the edges

= The size of a matching is the number of edges it
includes

= A maximum matching is one with the largest
possible size

Given a bipartite graph, find a maximum matching
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0. Given a 1. Build a helper graph: 2. Solve max-flow on the 3. Interpret the flow
bipartite graph * addsource s and sink t helper graph, to find a f* as a matching
* addedgesfromsandtot maximum flow [~

What’s the bug in

my thinking?




0. Given a
bipartite graph
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1. Build a helper graph:

add source s and sink ¢
add edges from s andto ¢

2. Solve max-flow on the
helper graph, to find a
maximum flow [~

wtf 2!

This isntthe
sort of flow |
expected!

3. Interpret the flow
/" as a matching
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THE TRANSLATION STRATEGY

REQ1: We can find a max flow f* that can be
translated into a matching, call it m*

REQ2: If there were a larger-size matching m’
then it would translate to a larger-value flow

fl

But there cannot be such a f’, because f* is a
maximum flow. Therefore there is no such m’,
thus m* is a maximum matching.

matching
size

A

hypothetical
matching with C)
larger size

matching m”* .

page 41

flow
value

. max flow f*
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THE TRANSLATION STRATEGY Ford-Fulkerson will produce an integer flow; since all
capacities are integer. Indeed, the flow on each edge

REQ1: We can find a max flow f* that can be / must be either 0 or 1:
translated into a matching, call it m* /

1
REQ2: If there were a larger-size matching m’ L O ’ 1 T
. \ /‘\ ’
then it would translate to a larger-value flow O ~=
' 7
But there cannot be sych a f’, because f* is a

maximum flow. Therefore there is no such m’,
thus m* is a maximum matching.

-

Thus, the capacity constraints tell us that, when we
transiate f* into an edge selection, it meets the
definition of “matching”.

When we translate matching < flow in the obvious way,
value(flow)=size(matching)

So if we had a larger-size matchingm' it would translate to a
larger-value flow f.
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King’s Cross
& St Pancras
International

Ex5qg6. A signal failure can prevent travel
in both directions between a pair of
adjacent stations. How many signal failures
it would take to prevent travel from Kings
Cross to Embankment?

Embankment



SECTIONS 6.5 and 6.6
Prim’s and Kruskal’s

algorithms



201/501Y.V1
(UK variant) 198
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501Y.V2
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501Y.V3

20D

nextstrain.org 20 February 2021



Similarity matrix Similarity graph + subtree

genome i

genome j

= high similarity s high similarity — tree edges
H

B low similarity Lo
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Given a connected undirected graph g with edge
weights,

= A spanning tree of g is a tree that connects all of
g’s vertices, using some or all of g’s edges

=  The weight of a spanning tree is the sum of all its
edge weights

= A minimum spanning tree (MST) is a spanning
tree that has minimum weight among all
spanning trees

Given such a graph, find a minimum spanning tree
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Let’s build up a tree, edge by edge.

SIMPLE GREEDY ALGORITHM:
Which edge would you add
next, to grow the tree?
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PRIM’S ALGORITHM

Given a tree we’ve built so far,

1. look at the frontier of vertices we might add next,
and at the cut between our tree and those vertices

2. pick the lowest-weight edge across this cut,
and add it to the tree

3. Assert: the tree we have so far is part of some
minimum spanning tree

Repeat until we have a spanning tree.

PROOF OF CORRECTNESS (OUTLINE)

We can prove the assertion on line 3, using the
“breakpoint” proof strategy plus some fiddly
maths about trees. The final output is hence a
minimum spanning tree.
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def prim(g, s):

for v in g.vertices: PRIM’S ALGORITHM
v.distance = oo
v.in_tree = False Given a tree we’ve built so far,

s.come_from = None . . .
s distance = 0 1. look at the frontier of vertices we might add next,

toexplore = PriorityQueue([s], sortkey = Av: v.distance) and at the cut between our tree and those vertices

e met teomilen. dsamsat)s 2. pick the lowest-weight edge across this cut,

v = toexplore.popmin() and add it to the tree
v.in_tree = True

for (w, edgeweight) in v.neighbours: 3. Assert: the tree we have so far is part of some

minimum spanning tree

if (not w.in_tree) and edgeweight < w.distance:
w.distance = edgeweight
w.come_from = v
if w in toexplore:
toexplore.decreasekey(w)
else:
toexplore.push(w)

Repeat until we have a spanning tree.

Don’t recompute the
frontier every iteration.

Instead, store it &
update it.




def prim(g, s):
for v in g.vertices:
v.distance = oo
v.in_tree = False
s.come_from = None
s.distance = 0
toexplore = PriorityQueue([s], sortkey = Av: v.distance)

while not toexplore.isempty():
v = toexplore.popmin()
v.in_tree = True
for (w, edgeweight) in v.neighbours:

if (not w.in_tree) and edgeweight < w.distance:
w.distance = edgeweight
w.come_from = v
if w in toexplore:
toexplore.decreasekey(w)
else:
toexplore.push(w)

def dijkstra(g, s):

for v in g.vertices:
v.distance = o

s.distance = 0

toexplore = PriorityQueue([s], sortkey = Av:

while not toexplore.is_empty():
v = toexplore.popmin()

for (w,edgecost) in v.neighbours:
dist_w = v.distance + edgecost
if dist_w < w.distance:
w.distance = dist + w

if w in toexplore:
toexplore.decreasekey(w)
else:
toexplore.push(w)

v.distance)
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o 0
Let’s build up a forest, edge by edge. e (G /

SIMPLE GREEDY ALGORITHM:
Which edge would you add
next, to grow the forest?




KRUSKAL'S ALGORITHM

Given a forest we’ve built so far,

1. look at all the edges that would join two fragments
of the forest

2. pick the lowest-weight one and add it to the tree,
thereby joining two fragments

3. Assert: the forest we have so far is part of some
minimum spanning tree

Repeat until we have a spanning tree.

PROOF OF CORRECTNESS (OUTLINE)

We can prove the assertion on line 3, using the
“breakpoint” proof strategy plus some fiddly
maths about trees. The final output is hence a
minimum spanning tree.
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EXERCISE. Run through the

steps of Kruskal’s algorithm.
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%8 Algorithms 1 2022-23 Algorithm: % +
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AMBRIDGE

% Algorithms 1 2022-23

Dashboard / My courses / Schools, Faculties and Departments / Computer Science and Technology, Department of / Teaching / Part IA
/ Part IA courses [ Algorithms 1 2022-23 / Ticks / Algorithms Tick 1

= e
b )
** A Back to 'Ticks'
o = Description 3= Submissions list ~ #f Similarity A Test activity
-
L i Similarity List of similarities found
A
#  First name / Surname Similar to Cluster #

bums.py 0.50 / 1.00 ii II ii i
bums.py 0.50 / 1.00 u bums.py 0.50 / 1.00 2
— Christos Falas (*)
bums.py 1.00 / 1.00 bums. ui 0.50/1.00
4 iJiJms py 0.50 /1.00

bums.py 0.50 / 1.00 W bums.py 1.00 / 1.00 3

bums.py 0.50 / 1.00 19
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% Algonthms challenge: rank-sim X +
&

C # cl.cam.ac.uk/teaching/2223/Algorithm2/ticks/rank-sim.html

Algorithms challenge: rank-sim
Order items by similarity

In this tick, your aim is to find a good order for a set of items, given similarity scores between them. You
are given a list of pairs of items and their similarity scores (this list doesn’t include all pairs). Here is an
example:

« ticksim train.csv

We saw an illustration in the video for section 6.6. We were given a list of students, and also the
similarity scores between their submitted code for an Algorithms tick. We used Kruskal’s algorithm to
find an ordering for the students, such that two students with a high similarity score appeared close to
each other in the order.

Your aim is to produce a good ordering of items. To be precise, let s,,, € (0, 1) be the similarity score
between items uw and v. Your score will be

r—m 1
_ — 100 x here = —— Zu — 2y| log(1 — Syu)-
score —, Where == E ‘ ‘ og( Suv)

pairs (u,v)

Here z, is the index of item w in your ordering, M is the number of pairs, and N is the number of items.
The normalization is so that the score is always < 100 (since £ < 0); and the constant m is the
expected score from a random ordering,

1
m = M Z log(1 — syy),
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def kruskal(g):

KRUSKALS ALGORITHM tree_edges = []
) , ) partition = DisjointSet()
Given a forest we’ve built so far, for v in g.vertices:

partition.addsingleton(v)

1. look at all the edges that would join two fragments , ,
edges = sorted(g.edges, sortkey = A(u,v,weight): weight)

of the forest —
2. pick the lowest-weight one Qadd it to the tree, | for F()“’Vé:if?f?iﬁh;tigtgiiﬁ%ei: %
. = 1T1 . w1l u
thereby joining two fragments q = partition.getsetwith(v)
. rt: the forest we hav ris par m if p 1= q:
3 As.se.‘ t: the fo es.t e have so far is part of some tree_edges. append((u,v))
minimum spanning tree partition.merge(p, q)

Repeat until we have a spanning tree.

Don’t recompute these
edges every iteration.

Just pre-sort the list of all -)
edges, then ignore those that
are within-fragment.
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def kruskal(g):
tree_edges = []
partition = DisjointSet()
for v in g.vertices:
partition.addsingleton(v)
edges = sorted(g.edges, sortkey = A(u,v,weight): weight)

for (u,v,edgeweight) in g.edges:
p = partition.getsetwith(u)
g = partition.getsetwith(v)
if p!=q:
tree_edges.append((u,v))
partition.merge(p, q)

The abstract data type DisjointSet stores
a collection of disjoint sets, and supports

» addsingleton(v)
= p = getsetwith(v)
= merge(p,q)
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