

Write an amendment to the classic breadth
first search algorithm to return all shortest
paths on a graph where all paths have equal
weight. Ensure that your algorithm can cope
with cycles. Ensure you algorithm can cope
with the case where there is no path.
Implement this in python. The graph will
be stored as a dictionary of sets.

Euan Worth
(Queens’)

To modify the classic Breadth First Search algorithm to return all shortest paths
on a graph where all paths have equal weight, we can make use of a modified
version of Dijkstra's algorithm. This algorithm is known as the "All Shortest Paths
Algorithm," and it is a modification of Dijkstra's algorithm that can handle
graphs with cycles.

The basic idea behind the All Shortest Paths Algorithm is to keep track of all the
possible shortest paths from the starting vertex to each of the other vertices in
the graph. We can achieve this by maintaining a dictionary that maps each
vertex to a list of all possible shortest paths from the starting vertex to that
vertex.

Here is the Python implementation of the All Shortest Paths Algorithm:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
18
19
20
21
22
23
24
25
26
33
34

def all_shortest_paths(g, s, t):
distance = {v: float('inf') for v in g}
distance[s] = 0
visited = {v: False for v in g}
paths = {v: [] for v in g}
paths[s] = [[s]]
queue = deque([s])

while queue:
v = queue.popleft()
if v == t:

return paths[t]

for w in g[v]:
if not visited[w]:

new_dist = distance[v] + 1
if new_dist <= distance[w]:

distance[w] = new_dist
queue.append(w)

if new_dist == distance[w]:
for path in paths[v]:

paths[w].append(path + [w])

visited[v] = True

return []

To prove that the All Shortest Paths Algorithm terminates, we can use the fact that the algorithm is based on
Breadth First Search (BFS), which is a well-known algorithm that always terminates on finite graphs. In BFS, each
vertex is visited at most once, and the algorithm terminates when all reachable vertices have been visited. Since
the All Shortest Paths Algorithm is a modification of BFS, it also terminates on finite graphs.

To prove that the All Shortest Paths Algorithm produces the correct result, we need to show that it computes all
possible shortest paths from the starting vertex to each of the other vertices in the graph.

Let 𝑃(𝑢, 𝑣) be the set of all possible shortest paths from 𝑢 to 𝑣. We want to show that the paths computed by
the algorithm all_shortest_paths(𝑔,𝑠,𝑡) are exactly 𝑃 𝑠, 𝑡 for any pair of vertices (𝑠, 𝑡).

We can prove this by induction on the number of vertices in the graph. Let 𝑔 = (𝑉, 𝐸) be a graph with 𝑛 vertices,
and let 𝑠 and 𝑡 be two vertices in 𝑔.

Base case: If 𝑛 = 1, then 𝑠 and 𝑡 are the same vertex, and the only possible path is the empty path. The
algorithm correctly returns the empty path.

Induction hypothesis: Assume that the algorithm correctly computes all possible shortest paths from 𝑠 to each
of the other 𝑛 − 1 vertices in 𝑔.

Induction step: Consider a graph 𝑔′ = (𝑉′, 𝐸′) obtained from 𝑔 by adding a new vertex 𝑤 and edges 𝑠 → 𝑤 and
𝑤 → 𝑡. We want to show that the algorithm correctly computes all possible shortest paths from 𝑠 to each of the
other 𝑛 vertices in 𝑔′.

Using thorough mathematical language and sound reasoning, prove both that your algorithm terminate, and
produces the correct result.

EW

Please finish the proofEW

First, note that the algorithm computes the correct distance 𝑑(𝑠, 𝑣) for each vertex 𝑣 in 𝑔′. This follows from the
fact that the algorithm is based on BFS, which computes the shortest path from start to each reachable vertex.

Now, consider a vertex 𝑣 in 𝑔′, where 𝑣 is not equal to 𝑠 or 𝑡. We need to show that the algorithm computes all
possible shortest paths from 𝑠 to 𝑣.

Case 1: 𝑣 is not reachable from 𝑠 in 𝑔. In this case, the algorithm correctly returns an empty list, since there is no
path from 𝑠 to 𝑣.

CLRS3 lemma 24.15 (used in Bellman-Ford). Consider a weighted directed

graph. Consider any shortest path from 𝑠 to 𝑡,

𝑠 = 𝑣0 → 𝑣1 → ⋯ → 𝑣𝑘 = 𝑡.

Suppose we initialize the data structure by

𝑣.dist = ∞ for all vertices other than 𝑠

𝑠.dist = 0

and then we perform a sequence of relaxation steps that includes, in order,

relaxing 𝑣0 → 𝑣1, then 𝑣1 → 𝑣2, then … then 𝑣𝑘−1 → 𝑣𝑘. After these

relaxations, and at all times thereafter, 𝑣𝑘.dist = distance(𝑠 to 𝑣𝑘).

We’ll prove by induction that, after the 𝑖th edge has been relaxed,
𝑣𝑖.dist = distance(𝑠 to 𝑣𝑖)

BASE CASE 𝑖 = 0: Note that 𝑠 = 𝑣0. We initialized 𝑠.dist = 0, and
distance 𝑠 to 𝑠 = 0, so the induction hypothesis is true.

INDUCTION STEP: …

give the shortest possible prompt that if given
back to you would mean you generate
equivalent code to the following:

```
from collections import deque
def shortest_paths(g, s, t):    

queue = deque([s])    
nodes = {}

Jack Peck
(Jesus)



Write code to find the shortest paths from node 𝑠 to node 𝑡 in a graph using Breadth-First Search (BFS) and 
backtracking. The code should use a deque from the collections module and define a Node class with a 
constructor that takes a vertex and distance. The Node class should have a backpointers list to keep track of the 
paths. The shortest_paths function should take a graph 𝑔, source node 𝑠, and target node 𝑡 as arguments, and 
return a list of all the shortest paths from 𝑠 to 𝑡.

give the shortest possible prompt that if given back to you would mean you generate equivalent code to the 
following: […]

JP



SECTION 6.4

Matchings



DEFINITIONS

▪ A bipartite graph is an undirected graph in which 
the vertices are split into two sets, and all edges 
go between these sets

▪ A matching in a bipartite graph is a selection of 
edges, such that no vertex is connected to more 
than one of the edges

▪ The size of a matching is the number of edges it 
includes

▪ A maximum matching is one with the largest 
possible size

PROBLEM STATEMENT
Given a bipartite graph, find a maximum matching

page 40



s t
1
1

1

1
1

1
1
1

1

1

1

1

1

0. Given a 
bipartite graph 
...

1. Build a helper graph:
• add source 𝑠 and sink 𝑡
• add edges from 𝑠 and to 𝑡

2. Solve max-flow on the 
helper graph, to find a 
maximum flow 𝑓∗

3. Interpret the flow 
𝑓∗ as a matching

What’s the bug in 
my thinking?

page 40



s t
1
1

1

1
1

1
1
1

1

1

1

1

1

wtf ?!
This isn’t the 
sort of flow I 
expected!

0. Given a 
bipartite graph 
...

1. Build a helper graph:
• add source 𝑠 and sink 𝑡
• add edges from 𝑠 and to 𝑡

2. Solve max-flow on the 
helper graph, to find a 
maximum flow 𝑓∗

3. Interpret the flow 
𝑓∗ as a matching



s t
3
2

1

1

1
1
1

1

1

1

2

1

2

Hold on!
The max-flow 
solution 
actually leads 
to a worse
matching.

0. Given a 
bipartite graph 
...

1. Build a helper graph:
• add source 𝑠 and sink 𝑡
• add edges from 𝑠 and to 𝑡

2. Solve max-flow on the 
helper graph, to find a 
maximum flow 𝑓∗

3. Interpret the flow 
𝑓∗ as a matching

I’ll set up a 
flow problem 
where the goal 
is to pick edges 
to not use in 
the matching.



matching 
size

flow
value

max flow 𝑓∗
matching 𝑚∗

hypothetical 
matching with 

larger size

THE TRANSLATION STRATEGY

REQ1: We can find a max flow 𝑓∗ that can be 
translated into a matching, call it 𝑚∗

REQ2: If there were a larger-size matching 𝑚′
then it would translate to a larger-value flow 
𝑓′

But there cannot be such a 𝑓′, because 𝑓∗ is a 
maximum flow. Therefore there is no such 𝑚′, 
thus 𝑚∗ is a maximum matching.

page 41



THE TRANSLATION STRATEGY

REQ1: We can find a max flow 𝑓∗ that can be 
translated into a matching, call it 𝑚∗

REQ2: If there were a larger-size matching 𝑚′
then it would translate to a larger-value flow 
𝑓′

But there cannot be such a 𝑓′, because 𝑓∗ is a 
maximum flow. Therefore there is no such 𝑚′, 
thus 𝑚∗ is a maximum matching.

Ford-Fulkerson will produce an integer flow, since all 
capacities are integer. Indeed, the flow on each edge 
must be either 0 or 1:

Thus, the capacity constraints tell us that, when we 
translate 𝑓∗ into an edge selection, it meets the 
definition of “matching”.

When we translate matching ↔ flow in the obvious way,
value(flow)=size(matching)

So if we had a larger-size matching 𝑚′ it would translate to a 
larger-value flow 𝑓′.

page 41





Ex5q6. A signal failure can prevent travel 

in both directions between a pair of 

adjacent stations. How many signal failures 

it would take to prevent travel from Kings 

Cross to Embankment?

King’s Cross 
& St Pancras 
International

Embankment



SECTIONS 6.5 and 6.6

Prim’s and Kruskal’s 
algorithms



19A

19B

20A

20B

20C

20D

20E (EU1)

20F

20G

20H/
501Y.V2

20I/501Y.V1
(UK variant)

20J/
501Y.V3

nextstrain.org 20 February 2021



high similarity

low similarity

genome 𝑖

genome 𝑗

high similarity

low similarity

Similarity matrix Similarity graph

tree edges

+ subtree



DEFINITIONS

Given a connected undirected graph 𝑔 with edge 
weights,

▪ A spanning tree of 𝑔 is a tree that connects all of 
𝑔’s vertices, using some or all of 𝑔’s edges

▪ The weight of a spanning tree is the sum of all its 
edge weights

▪ A minimum spanning tree (MST) is a spanning 
tree that has minimum weight among all 
spanning trees

PROBLEM STATEMENT
Given such a graph, find a minimum spanning tree

3
2

1

2

3
2

1

2

3
2

1

2

page 42



12

7

13

15

2

18

6

4

3
20

5

A

D

B

C

E

G

I

H

J

F

SIMPLE GREEDY ALGORITHM: 
Which edge would you add 
next, to grow the tree?

Let’s build up a tree, edge by edge.

page 42



PRIM’S ALGORITHM
Given a tree we’ve built so far,

1. look at the frontier of vertices we might add next,
and at the cut between our tree and those vertices 

2. pick the lowest-weight edge across this cut,
and add it to the tree

3. Assert: the tree we have so far is part of some 
minimum spanning tree

Repeat until we have a spanning tree.

PROOF OF CORRECTNESS (OUTLINE)
We can prove the assertion on line 3, using the 
“breakpoint” proof strategy plus some fiddly 
maths about trees. The final output is hence a 
minimum spanning tree.

page 43



PRIM’S ALGORITHM
Given a tree we’ve built so far,

1. look at the frontier of vertices we might add next,
and at the cut between our tree and those vertices 

2. pick the lowest-weight edge across this cut,
and add it to the tree

3. Assert: the tree we have so far is part of some 
minimum spanning tree

Repeat until we have a spanning tree.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

def prim(g, s):
for v in g.vertices:

v.distance = ∞
v.in_tree = False

s.come_from = None
s.distance = 0
toexplore = PriorityQueue([s], sortkey = λv: v.distance)

while not toexplore.isempty():
v = toexplore.popmin()
v.in_tree = True
for (w, edgeweight) in v.neighbours:

if (not w.in_tree) and edgeweight < w.distance:
w.distance = edgeweight
w.come_from = v
if w in toexplore:

toexplore.decreasekey(w)
else:

toexplore.push(w)

Don’t recompute the 
frontier every iteration.

Instead, store it & 
update it.

page 43



PRIM’S ALGORITHM
Given a tree we’ve built so far,

1. look at the frontier of vertices we might add next,
and at the cut between our tree and those vertices 

2. pick the lowest-weight edge across this cut,
and add it to the tree

3. Assert: the tree we have so far is part of some 
minimum spanning tree

Repeat until we have a spanning tree.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

def prim(g, s):
for v in g.vertices:

v.distance = ∞
v.in_tree = False

s.come_from = None
s.distance = 0
toexplore = PriorityQueue([s], sortkey = λv: v.distance)

while not toexplore.isempty():
v = toexplore.popmin()
v.in_tree = True
for (w, edgeweight) in v.neighbours:

if (not w.in_tree) and edgeweight < w.distance:
w.distance = edgeweight
w.come_from = v
if w in toexplore:

toexplore.decreasekey(w)
else:

toexplore.push(w)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

def dijkstra(g, s):
for v in g.vertices:

v.distance = ∞

s.distance = 0

toexplore = PriorityQueue([s], sortkey = 𝜆v: v.distance)

while not toexplore.is_empty():
v = toexplore.popmin()

for (w,edgecost) in v.neighbours:
dist_w = v.distance + edgecost
if dist_w < w.distance:

w.distance = dist + w

if w in toexplore:
toexplore.decreasekey(w)

else:
toexplore.push(w)



12

7

13

15

2

18

6

4

3
20

5

A

D

B

C

E

G

I

H

J

F

SIMPLE GREEDY ALGORITHM: 
Which edge would you add 
next, to grow the forest?

Let’s build up a forest, edge by edge.

page 45



KRUSKAL’S ALGORITHM
Given a forest we’ve built so far,

1. look at all the edges that would join two fragments 
of the forest

2. pick the lowest-weight one and add it to the tree,
thereby joining two fragments

3. Assert: the forest we have so far is part of some 
minimum spanning tree

Repeat until we have a spanning tree.

PROOF OF CORRECTNESS (OUTLINE)
We can prove the assertion on line 3, using the 
“breakpoint” proof strategy plus some fiddly 
maths about trees. The final output is hence a 
minimum spanning tree.

page 45



43

1

2
9

6

5

7

8

d

b

f

e

c

a

EXERCISE. Run through the 
steps of Kruskal’s algorithm.

page 46



high similarity

low similarity

genome 𝑖

genome 𝑗

Similarity matrix



high similarity

low similarity

genome 𝑖

genome 𝑗

Similarity matrix





1
2
3
4
5
6
7
8
9
10
11
12
13

def kruskal(g):
tree_edges = []
partition = DisjointSet()
for v in g.vertices:

partition.addsingleton(v)
edges = sorted(g.edges, sortkey = 𝜆(u,v,weight): weight)

for (u,v,edgeweight) in g.edges:
p = partition.getsetwith(u)
q = partition.getsetwith(v)
if p != q:

tree_edges.append((u,v))
partition.merge(p, q)

KRUSKAL’S ALGORITHM
Given a forest we’ve built so far,

1. look at all the edges that would join two fragments 
of the forest

2. pick the lowest-weight one and add it to the tree,
thereby joining two fragments

3. Assert: the forest we have so far is part of some 
minimum spanning tree

Repeat until we have a spanning tree.

Don’t recompute these 
edges every iteration.

Just pre-sort the list of all 
edges, then ignore those that 
are within-fragment.

page 45



1
2
3
4
5
6
7
8
9
10
11
12
13

def kruskal(g):
tree_edges = []
partition = DisjointSet()
for v in g.vertices:

partition.addsingleton(v)
edges = sorted(g.edges, sortkey = 𝜆(u,v,weight): weight)

for (u,v,edgeweight) in g.edges:
p = partition.getsetwith(u)
q = partition.getsetwith(v)
if p != q:

tree_edges.append((u,v))
partition.merge(p, q)

The abstract data type DisjointSet stores 
a collection of disjoint sets, and supports

▪ addsingleton(v)
▪ p = getsetwith(v)
▪ merge(p,q)

page 46


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32

