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We cannot find an augmenting path in the residual graph. So, terminate.

~~~~~




def ford_fulkerson(g, s, t):
# Let f be a flow, initially empty
for u = v in g.edges:

flu-=v) =0

# Define a helper function for finding an augmenting path
def find_augmenting_path():
# Define the residual graph h on the same vertices as g
for u > v in g.edges:
if flu—>v)<c(u-v): give h an edge u - v labelled “inc u — v”
if flu—>v)>0: give h an edge v » u labelled “dec u — v”
if h has a path from s to t:

return some such path, together with the labels of its edges
else:

return None

# Repeatedly find an augmenting path and add flow to it
while True:
p = find_augmenting_path()
if p is None:
break
else:
compute 8, the amount of flow to apply along p, and apply it
# Assert: § >0

# Assert: f is still a valid flow O
S




SECTION 6.3
Max-flow min-cut
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A cut is a partition of the vertices into two sets,
IV =85 US, with the source vertex s € S and
the sink vertext € S.

The capacity of the cut is
capacity(S,S) = Z c(u - v)

UES, VES:
uU-v

MAX-FLOW MIN-CUT THEOREM
For any flow f and any cut (S, S),

value(f) < capacity(S,S)
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MAX-FLOW MIN-CUT THEOREM
For any flow f and any cut (S, S),

value(f) < capacity(S,S)
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MAX-FLOW MIN-CUT THEOREM
For any flow f and any cut (S, S),

value(f) < capacity(S, S)



CORRECTNESS THEOREM

Suppose Ford-Fulkerson terminates, producing a flow f

*

. Then ™ is @ maximum flow.

def ford_fulkerson(g, s, t): .
# Let [ be a flow, initially empty F (OW mwofk.
for u—> v in g.edges: - {»‘ o —
fu-v) =0 /" -\’. < l ‘4
# Define a helper function for finding an augmenting path s [ 4
def find_augmenting_path(): \) \’ /
# Define the residual graph h on the same vertices as g \ e e PY A Y
for u > v in g.edges: // f'
if f(u—>v)<c(u—wv): give h an edge u —» v labelled “inc u — v” e
if f(u—>v)>0: give h an edge v > u labelled “dec u — v”
if h has a path from s to t:
return some such path, together with the labels of its edges [\
else: N N
# Let S be the set of vertices the bandits can reach (used in the proof) hsfdud J ’ : A v (G"\ rncrecqe
return None ) ,_.V)
o —>0 f(u
\.

# Repeatedly find an augmenting path and add flow to it

while True:
p = find_augmenting_path() ‘// / // A v Cﬁ’h Aecreoye
if p is None: PS P —\V
break i\ \) <+ f(\A )

else:
compute &, the amount of flow to apply along p, and apply it

# Assert: 6§ >0 J*
# Assert: f is still a valid flow

1. LetS* = {vertices reachable from s} in the residual graph, at termination.
2. The algorithm terminated, so t & S*, so (5*,S*) is a cut.

3. The residual graph has no edges from S*to S*, hence
* onedgesS* — .S;* in the flow network, flow=capacity
* onedgesS* « S*inthe flow network, flow=0

4. From the inequalities in the max-flow min-cut theorem, value(f*) = capacity(5*, S*); hence f* is a maximum flow.



SECTION 6.4

Matchings



= A bipartite graph is an undirected graph in which
the vertices are split into two sets, and all edges
go between these sets

= A matching in a bipartite graph is a selection of
edges, such that no vertex is connected to more
than one of the edges

= The size of a matching is the number of edges it
includes

= A maximum matching is one with the largest
possible size

Given a bipartite graph, find a maximum matching



i
/\

v-

<A
/
Vi
A
/ \
/N

0. Given a 1. Build a helper graph: 2. Solve max-flow on the 3. Interpret the flow
bipartite graph * addsource s and sink t helper graph, to find a f* as a matching
* addedgesfromsandtot maximum flow [~
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1. Build a helper graph:

add source s and sink ¢
add edges from s andto ¢

2. Solve max-flow on the
helper graph, to find a
maximum flow [~

wtf 2!

This isntthe
sort of flow |
expected!

3. Interpret the flow
/" as a matching




0. Given a
bipartite graph

1. Build a helper graph:
add source s and sink ¢
add edges from s andto ¢

'Ll set up a
flow problem
where the
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solution
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matehing.

2. Solve max-flow on the
helper graph, to find a
maximum flow [~
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3. Interpret the flow
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THE TRANSLATION STRATEGY

CLAIM1: We can find a max flow f* that can
be translated into a matching, call it m”*

CLAIM2: If there were a larger-size matching
m’ then it would translate to a larger-value
flow f'

But there cannot be such a f’, because f* is a
maximum flow. Therefore there is no such m’,
thus m* is a maximum matching.

matching
size

A

hypothetical
matching with C)

larger size

matching m”* .

flow
value

. max flow f*




THE TRANSLATION STRATEGY Ford-Fulkerson will produce an integer flow; since all
capacities are integer. Indeed, the flow on each edge

CLAIM1: We can find a max flow f* that can / must be either 0 or 1.

be translated into a matching, call it m”*

.1 ==
CLAIM2: If there were a larger-size matching N O\; 1 :”‘ Y
m’ then it would translate to a larger-value O/“"

flow f'
/

But there cannot be sych a f’, because f* is a
maximum flow. Therefore there is no such m’,
thus m* is a maximum matching.

The capacity constraints tell us that, when we transiate
f* into an edge selection, it meets the definition of
“matching”

When we did the translation f* - m”,
value(f™) = size(m”)

When we translate any matching to a flow, in the obvious way,
value(flow)=size(matching)

So if we had a larger-size matchingm' it would translate to a
larger-value flow f.
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King’s Cross
& St Pancras
International

Q. A signal failure can prevent travel in
both directions between a pair of stations.
How many signal failures it would take to
prevent travel from Kings Cross to
Embankment?

Embankment
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