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reachable 
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We cannot find an augmenting path in the residual graph. So, terminate.
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def ford_fulkerson(𝑔, 𝑠, 𝑡):
# Let 𝑓 be a flow, initially empty
for 𝑢 → 𝑣 in g.edges:

𝑓(𝑢 → 𝑣) = 0

# Define a helper function for finding an augmenting path
def find_augmenting_path():

# Define the residual graph ℎ on the same vertices as 𝑔
for 𝑢 → 𝑣 in 𝑔.edges:

if 𝑓 𝑢 → 𝑣 < 𝑐(𝑢 → 𝑣): give ℎ an edge 𝑢 → 𝑣 labelled “inc 𝑢 → 𝑣”
if 𝑓 𝑢 → 𝑣 > 0: give ℎ an edge 𝑣 → 𝑢 labelled “dec 𝑢 → 𝑣”

if ℎ has a path from 𝑠 to 𝑡:
return some such path, together with the labels of its edges

else:

# Let 𝑆 be the set of vertices reachable from 𝑠 (used in the proof)
return None

# Repeatedly find an augmenting path and add flow to it
while True:

p = find_augmenting_path()
if p is None:

break
else:

compute 𝛿, the amount of flow to apply along p, and apply it
# Assert: 𝛿 > 0
# Assert: 𝑓 is still a valid flow

𝑡𝑏

𝑎

𝑠

𝑐 reachable 
vertices



SECTION 6.3

Max-flow min-cut
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Total capacity 
163 trains/day

Total capacity 
228 
trains/day

Total capacity 
276 trains/day
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A cut is a partition of the vertices into two sets, 
𝑉 = 𝑆 ∪ ҧ𝑆, with the source vertex 𝑠 ∈ 𝑆 and 
the sink vertex 𝑡 ∈ ҧ𝑆.

The capacity of the cut is

capacity 𝑆, ҧ𝑆 = 

𝑢∈𝑆, 𝑣∈ ҧ𝑆∶
𝑢→𝑣

𝑐(𝑢 → 𝑣)

MAX-FLOW MIN-CUT THEOREM
For any flow 𝑓 and any cut (𝑆, ҧ𝑆),

value 𝑓 ≤ capacity(𝑆, ҧ𝑆)

𝑆

ҧ𝑆
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cut (𝐴, ҧ𝐴)

cut (𝐵, ത𝐵)

cut (𝐶, ҧ𝐶)
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flow 𝑖

MAX-FLOW MIN-CUT THEOREM
For any flow 𝑓 and any cut (𝑆, ҧ𝑆),

value 𝑓 ≤ capacity(𝑆, ҧ𝑆)



capacity 
of a cut

value of 
a flow

cut (𝐴, ҧ𝐴)

cut (𝐵, ത𝐵)

cut (𝐶, ҧ𝐶)

flow 𝑗

flow ℎ

flow 𝑖

MAX-FLOW MIN-CUT THEOREM
For any flow 𝑓 and any cut (𝑆, ҧ𝑆),

value 𝑓 ≤ capacity(𝑆, ҧ𝑆)

flow 𝑓∗, cut 𝑆∗, 𝑆∗



CORRECTNESS THEOREM
Suppose Ford-Fulkerson terminates, producing a flow 𝑓∗. Then 𝑓∗ is a maximum flow.
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def ford_fulkerson(𝑔, 𝑠, 𝑡):
# Let 𝑓 be a flow, initially empty
for 𝑢 → 𝑣 in g.edges:

𝑓(𝑢 → 𝑣) = 0

# Define a helper function for finding an augmenting path
def find_augmenting_path():

# Define the residual graph ℎ on the same vertices as 𝑔
for 𝑢 → 𝑣 in 𝑔.edges:

if 𝑓 𝑢 → 𝑣 < 𝑐(𝑢 → 𝑣): give ℎ an edge 𝑢 → 𝑣 labelled “inc 𝑢 → 𝑣”
if 𝑓 𝑢 → 𝑣 > 0: give ℎ an edge 𝑣 → 𝑢 labelled “dec 𝑢 → 𝑣”

if ℎ has a path from 𝑠 to 𝑡:
return some such path, together with the labels of its edges

else:
# Let 𝑆 be the set of vertices the bandits can reach (used in the proof)
return None

# Repeatedly find an augmenting path and add flow to it
while True:

p = find_augmenting_path()
if p is None:

break
else:

compute 𝛿, the amount of flow to apply along p, and apply it
# Assert: 𝛿 > 0
# Assert: 𝑓 is still a valid flow

1. Let 𝑆∗ = {vertices reachable from 𝑠} in the residual graph, at termination.

2. The algorithm terminated, so 𝑡 ∉ 𝑆∗, so (𝑆∗, ҧ𝑆∗) is a cut.

3. The residual graph has no edges from 𝑆∗ to ҧ𝑆∗, hence
• on edges 𝑆∗ → ҧ𝑆∗ in the flow network, flow=capacity
• on edges 𝑆∗ ← ҧ𝑆∗ in the flow network, flow=0

4. From the inequalities in the max-flow min-cut theorem, value 𝑓∗ = capacity 𝑆∗, ҧ𝑆∗ ; hence 𝑓∗ is a maximum flow. 



SECTION 6.4

Matchings



DEFINITIONS

▪ A bipartite graph is an undirected graph in which 
the vertices are split into two sets, and all edges 
go between these sets

▪ A matching in a bipartite graph is a selection of 
edges, such that no vertex is connected to more 
than one of the edges

▪ The size of a matching is the number of edges it 
includes

▪ A maximum matching is one with the largest 
possible size

PROBLEM STATEMENT
Given a bipartite graph, find a maximum matching
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0. Given a 
bipartite graph 
...

1. Build a helper graph:
• add source 𝑠 and sink 𝑡
• add edges from 𝑠 and to 𝑡

2. Solve max-flow on the 
helper graph, to find a 
maximum flow 𝑓∗

3. Interpret the flow 
𝑓∗ as a matching

What’s the bug in 
my thinking?
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wtf ?!
This isn’t the 
sort of flow I 
expected!

0. Given a 
bipartite graph 
...

1. Build a helper graph:
• add source 𝑠 and sink 𝑡
• add edges from 𝑠 and to 𝑡

2. Solve max-flow on the 
helper graph, to find a 
maximum flow 𝑓∗

3. Interpret the flow 
𝑓∗ as a matching



s t
3
2

1

1

1
1
1

1

1

1

2

1

2

Hold on!
The max-flow 
solution 
actually leads 
to a worse
matching.

0. Given a 
bipartite graph 
...

1. Build a helper graph:
• add source 𝑠 and sink 𝑡
• add edges from 𝑠 and to 𝑡

2. Solve max-flow on the 
helper graph, to find a 
maximum flow 𝑓∗

3. Interpret the flow 
𝑓∗ as a matching

I’ll set up a 
flow problem 
where the 
goal is to 
pick edges to 
discard.



matching 
size

flow
value

max flow 𝑓∗matching 𝑚∗

hypothetical 
matching with 

larger size

THE TRANSLATION STRATEGY

CLAIM1: We can find a max flow 𝑓∗ that can 
be translated into a matching, call it 𝑚∗

CLAIM2: If there were a larger-size matching 
𝑚′ then it would translate to a larger-value 
flow 𝑓′

But there cannot be such a 𝑓′, because 𝑓∗ is a 
maximum flow. Therefore there is no such 𝑚′, 
thus 𝑚∗ is a maximum matching.



THE TRANSLATION STRATEGY

CLAIM1: We can find a max flow 𝑓∗ that can 
be translated into a matching, call it 𝑚∗

CLAIM2: If there were a larger-size matching 
𝑚′ then it would translate to a larger-value 
flow 𝑓′

But there cannot be such a 𝑓′, because 𝑓∗ is a 
maximum flow. Therefore there is no such 𝑚′, 
thus 𝑚∗ is a maximum matching.

Ford-Fulkerson will produce an integer flow, since all 
capacities are integer. Indeed, the flow on each edge 
must be either 0 or 1.

The capacity constraints tell us that, when we translate 
𝑓∗ into an edge selection, it meets the definition of 
“matching”.

When we did the translation 𝑓∗ → 𝑚∗,
value(𝑓∗) = size(𝑚∗)

When we translate any matching to a flow, in the obvious way,
value(flow)=size(matching)

So if we had a larger-size matching 𝑚′ it would translate to a 
larger-value flow 𝑓′.





Q. A signal failure can prevent travel in 

both directions between a pair of stations. 

How many signal failures it would take to 

prevent travel from Kings Cross to 

Embankment?

King’s Cross 
& St Pancras 
International

Embankment
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