
𝑡𝑏

𝑎

𝑠

𝑐

cap. 3 cap. 4

𝑡𝑏

𝑎

𝑠

𝑐

WALKTHROUGH OF FORD-FULKERSON

inc b→tinc s→b

δ=4

A flow network

The residual
graph

An augmenting
path

𝑡𝑏

𝑎

𝑠

𝑐

0 /3 4 /4

𝑡𝑏

𝑎

𝑠

𝑐

WALKTHROUGH OF FORD-FULKERSON

δ=8

inc s→b

dec b→t

𝑡𝑏

𝑎

𝑠

𝑐

0 /3 4 /4

𝑡𝑏

𝑎

𝑠

𝑐

WALKTHROUGH OF FORD-FULKERSON

δ=2

𝑡𝑏

𝑎

𝑠

𝑐

2 /3 4 /4

𝑡𝑏

𝑎

𝑠

𝑐

WALKTHROUGH OF FORD-FULKERSON

reachable
vertices

We cannot find an augmenting path in the residual graph. So, terminate.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
18
19
20
21
22
23
24
25
26
33
39

def ford_fulkerson(𝑔, 𝑠, 𝑡):
Let 𝑓 be a flow, initially empty
for 𝑢 → 𝑣 in g.edges:

𝑓(𝑢 → 𝑣) = 0

Define a helper function for finding an augmenting path
def find_augmenting_path():

Define the residual graph ℎ on the same vertices as 𝑔
for 𝑢 → 𝑣 in 𝑔.edges:

if 𝑓 𝑢 → 𝑣 < 𝑐(𝑢 → 𝑣): give ℎ an edge 𝑢 → 𝑣 labelled “inc 𝑢 → 𝑣”
if 𝑓 𝑢 → 𝑣 > 0: give ℎ an edge 𝑣 → 𝑢 labelled “dec 𝑢 → 𝑣”

if ℎ has a path from 𝑠 to 𝑡:
return some such path, together with the labels of its edges

else:

Let 𝑆 be the set of vertices reachable from 𝑠 (used in the proof)
return None

Repeatedly find an augmenting path and add flow to it
while True:

p = find_augmenting_path()
if p is None:

break
else:

compute 𝛿, the amount of flow to apply along p, and apply it
Assert: 𝛿 > 0
Assert: 𝑓 is still a valid flow

𝑡𝑏

𝑎

𝑠

𝑐 reachable
vertices

SECTION 6.3

Max-flow min-cut

ORIGINS

ORIGINS

EG

The
Bottleneck

ORIGINS

ORIGINS

EG

The
Bottleneck

Total capacity
163 trains/day

Total capacity
228
trains/day

Total capacity
276 trains/day

𝑡𝑏

𝑎

𝑠

𝑐

cap. 3 cap. 4

𝑡
𝑏

𝑎
𝑠

𝑐

A cut is a partition of the vertices into two sets,
𝑉 = 𝑆 ∪ ҧ𝑆, with the source vertex 𝑠 ∈ 𝑆 and
the sink vertex 𝑡 ∈ ҧ𝑆.

The capacity of the cut is

capacity 𝑆, ҧ𝑆 =

𝑢∈𝑆, 𝑣∈ ҧ𝑆∶
𝑢→𝑣

𝑐(𝑢 → 𝑣)

MAX-FLOW MIN-CUT THEOREM
For any flow 𝑓 and any cut (𝑆, ҧ𝑆),

value 𝑓 ≤ capacity(𝑆, ҧ𝑆)

𝑆

ҧ𝑆

capacity
of a cut

value of
a flow

cut (𝐴, ҧ𝐴)

cut (𝐵, ത𝐵)

cut (𝐶, ҧ𝐶)

flow 𝑗

flow ℎ

flow 𝑖

MAX-FLOW MIN-CUT THEOREM
For any flow 𝑓 and any cut (𝑆, ҧ𝑆),

value 𝑓 ≤ capacity(𝑆, ҧ𝑆)

capacity
of a cut

value of
a flow

cut (𝐴, ҧ𝐴)

cut (𝐵, ത𝐵)

cut (𝐶, ҧ𝐶)

flow 𝑗

flow ℎ

flow 𝑖

MAX-FLOW MIN-CUT THEOREM
For any flow 𝑓 and any cut (𝑆, ҧ𝑆),

value 𝑓 ≤ capacity(𝑆, ҧ𝑆)

flow 𝑓∗, cut 𝑆∗, 𝑆∗

CORRECTNESS THEOREM
Suppose Ford-Fulkerson terminates, producing a flow 𝑓∗. Then 𝑓∗ is a maximum flow.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
18
19
20
21
22
23
24
25
26
33
39

def ford_fulkerson(𝑔, 𝑠, 𝑡):
Let 𝑓 be a flow, initially empty
for 𝑢 → 𝑣 in g.edges:

𝑓(𝑢 → 𝑣) = 0

Define a helper function for finding an augmenting path
def find_augmenting_path():

Define the residual graph ℎ on the same vertices as 𝑔
for 𝑢 → 𝑣 in 𝑔.edges:

if 𝑓 𝑢 → 𝑣 < 𝑐(𝑢 → 𝑣): give ℎ an edge 𝑢 → 𝑣 labelled “inc 𝑢 → 𝑣”
if 𝑓 𝑢 → 𝑣 > 0: give ℎ an edge 𝑣 → 𝑢 labelled “dec 𝑢 → 𝑣”

if ℎ has a path from 𝑠 to 𝑡:
return some such path, together with the labels of its edges

else:
Let 𝑆 be the set of vertices the bandits can reach (used in the proof)
return None

Repeatedly find an augmenting path and add flow to it
while True:

p = find_augmenting_path()
if p is None:

break
else:

compute 𝛿, the amount of flow to apply along p, and apply it
Assert: 𝛿 > 0
Assert: 𝑓 is still a valid flow

1. Let 𝑆∗ = {vertices reachable from 𝑠} in the residual graph, at termination.

2. The algorithm terminated, so 𝑡 ∉ 𝑆∗, so (𝑆∗, ҧ𝑆∗) is a cut.

3. The residual graph has no edges from 𝑆∗ to ҧ𝑆∗, hence
• on edges 𝑆∗ → ҧ𝑆∗ in the flow network, flow=capacity
• on edges 𝑆∗ ← ҧ𝑆∗ in the flow network, flow=0

4. From the inequalities in the max-flow min-cut theorem, value 𝑓∗ = capacity 𝑆∗, ҧ𝑆∗ ; hence 𝑓∗ is a maximum flow.

SECTION 6.4

Matchings

DEFINITIONS

▪ A bipartite graph is an undirected graph in which
the vertices are split into two sets, and all edges
go between these sets

▪ A matching in a bipartite graph is a selection of
edges, such that no vertex is connected to more
than one of the edges

▪ The size of a matching is the number of edges it
includes

▪ A maximum matching is one with the largest
possible size

PROBLEM STATEMENT
Given a bipartite graph, find a maximum matching

s t
1
1

1

1
1

1
1
1

1

1

1

1

1

0. Given a
bipartite graph
...

1. Build a helper graph:
• add source 𝑠 and sink 𝑡
• add edges from 𝑠 and to 𝑡

2. Solve max-flow on the
helper graph, to find a
maximum flow 𝑓∗

3. Interpret the flow
𝑓∗ as a matching

What’s the bug in
my thinking?

s t
1
1

1

1
1

1
1
1

1

1

1

1

1

wtf ?!
This isn’t the
sort of flow I
expected!

0. Given a
bipartite graph
...

1. Build a helper graph:
• add source 𝑠 and sink 𝑡
• add edges from 𝑠 and to 𝑡

2. Solve max-flow on the
helper graph, to find a
maximum flow 𝑓∗

3. Interpret the flow
𝑓∗ as a matching

s t
3
2

1

1

1
1
1

1

1

1

2

1

2

Hold on!
The max-flow
solution
actually leads
to a worse
matching.

0. Given a
bipartite graph
...

1. Build a helper graph:
• add source 𝑠 and sink 𝑡
• add edges from 𝑠 and to 𝑡

2. Solve max-flow on the
helper graph, to find a
maximum flow 𝑓∗

3. Interpret the flow
𝑓∗ as a matching

I’ll set up a
flow problem
where the
goal is to
pick edges to
discard.

matching
size

flow
value

max flow 𝑓∗matching 𝑚∗

hypothetical
matching with

larger size

THE TRANSLATION STRATEGY

CLAIM1: We can find a max flow 𝑓∗ that can
be translated into a matching, call it 𝑚∗

CLAIM2: If there were a larger-size matching
𝑚′ then it would translate to a larger-value
flow 𝑓′

But there cannot be such a 𝑓′, because 𝑓∗ is a
maximum flow. Therefore there is no such 𝑚′,
thus 𝑚∗ is a maximum matching.

THE TRANSLATION STRATEGY

CLAIM1: We can find a max flow 𝑓∗ that can
be translated into a matching, call it 𝑚∗

CLAIM2: If there were a larger-size matching
𝑚′ then it would translate to a larger-value
flow 𝑓′

But there cannot be such a 𝑓′, because 𝑓∗ is a
maximum flow. Therefore there is no such 𝑚′,
thus 𝑚∗ is a maximum matching.

Ford-Fulkerson will produce an integer flow, since all
capacities are integer. Indeed, the flow on each edge
must be either 0 or 1.

The capacity constraints tell us that, when we translate
𝑓∗ into an edge selection, it meets the definition of
“matching”.

When we did the translation 𝑓∗ → 𝑚∗,
value(𝑓∗) = size(𝑚∗)

When we translate any matching to a flow, in the obvious way,
value(flow)=size(matching)

So if we had a larger-size matching 𝑚′ it would translate to a
larger-value flow 𝑓′.

Q. A signal failure can prevent travel in

both directions between a pair of stations.

How many signal failures it would take to

prevent travel from Kings Cross to

Embankment?

King’s Cross
& St Pancras
International

Embankment

	Slide 1: WALKTHROUGH OF FORD-FULKERSON
	Slide 2: WALKTHROUGH OF FORD-FULKERSON
	Slide 3: WALKTHROUGH OF FORD-FULKERSON
	Slide 4: WALKTHROUGH OF FORD-FULKERSON
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28

