CLRS3 [emma 24.15 (used in Bellman-Ford). Consider a weighted directed
graph. Consider any shortest path from s to t,
S=Vyg >V > >V, =t
Suppose we initialize the data structure by
v.dist = oo for all vertices other than s

s.dist=0
and then we perform a sequence of relaxation steps that includes, in order,
relaxing vy = v4, then v; = v,, then ... then vj,_; = v;. After these
relaxations, and at all times thereafter, v;, . dist = distance(s to vy).

We'll prove by induction that, after the ith edge has been relaxed,
v;.dist = distance(s to v;)

BASE =

; that s = vy. We initialized s.dist = 0, and
stance(sto s) = 0,

the induction hypothesis is true.
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SECTION 6.1
Flow networks



sink ‘ flow

value
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THE FLOW PROBLEM

Consider a graph in which each edge has a capacity.
How should we assign a flow to each edge,
SO as to maximize the flow value?
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Given a directed graph with a source vertex s and a sink vertex t, where each edge u — v has a capacity c(u - v) > 0,

a flow f is a set of edge labels f(u = v) such that
" 0<f(u—-v)<c(u—v)oneveryedge
= total flow in = total flow out, at all vertices other than s and ¢t

and the value of the flow is
* value(f) = net flow out of s = net flow into ¢

PROBLEM STATEMENT
Find a flow with maximum possible value (called a maximum flow).



SECTION 6.2
Ford-Fulkerson algorithm



SIMPLE GREEDY STRATEGY
Look for a path to the sink along which we can increase flow, then increase it as much as we can.

Repeat this, until we can’t reach the sink.

flow

value
12

can send +1
along s—v-t



SIMPLE GREEDY STRATEGY

Look for a path to the sink along which we can increase flow, then increase it as much as we can.
Repeat this, until we can’t reach the sink.



QUESTION. Can you find a larger-value flow than this?




I'll siphon some of f here,
from the a—b flow. Redirect
some of your excess to t, so0
they don't notice!

Send some of your
stuff to me, 50 |
can siphon it of f!

They've shown
me | can increase
my flow value!

Send some of
your stuff to me,

Send some of your
stuff to me, 90 |
can siphon it of f!



They've shown
me | can increase
my flow value!

[ could extract a
flow of 3 at b ...



They've shown
me | can increase
my flow value!

Or | could
extract a flow
of 3ata..



They've shown
me | can increase
my flow value!

| shall extract
an extra flow
of 2 at t.



>@%

‘ flow value has
increased by 2

Ford-Fulkerson algorithm

1.
2.

Start with zero flow

Run bandit search to discover if the flow to t can be increased,
and if so find an appropriate sequence of edges

If t can be reached:
update the flow along those edges, then go back to step 2

If t can’t be reached: terminate.



STEP 2A. Build the residual graph, which has the same
vertices as the flow network, and

» iff(u—-v)<clu-v):
give the residual graph anedge u = v
with the label “increase flow u — v”

= iff(u—-v)>0:
give the residual graph an
with the label “decrease f

STEP 2B. Look for a path from s to t in the residual graph.
This is called an augmenting path.

STEP 3. Find an update amount § > 0 that can be applied to
all the edges along the augmenting path. Apply it.




EXERCISE. Find a way to increase the flow value.




6. Graphs and subgraphs
Lecture 17 6.1 Flow networks & (9:31) code — subgraphs
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% Algarithms tick max-flow b4 -+

< C & cl.cam.ac.uk/teaching/2223/Algorithm2/ticks/max-flow.html

Lecture 18

ecture 101 Algorithms tick: max-flow

Maximum flow with Ford-
Fulkerson / Edmonds-Karp

In this tick you will build a Ford—Fulkerson implementation from
scratch. In fact you will implement the Edmonds—Karp variant of Ford—
Fulkerson, which uses breadth first search (BFS) to find augmenting
paths, and which has O(V E?) running time.




def ford_fulkerson(g, s, t):
# Let f be a flow, initially empty
for u > v in g.edges:

flu-v) =0

# Define a helper function for finding an augmenting path
def find_augmenting_path():
# Define the residual graph h on the same vertices as g
for u > v in g.edges:
if flu—»v)<c(u-v): give h an edge u — v labelled “inc u — v”
if flu—>v)>0: give h an edge v - u labelled “dec u — v”
if h has a path from s to t:
return some such path, together with the labels of its edges
else:

# Let S be the set of vertices the bandits can reach (used in the proof)
return None

# Repeatedly find an augmenting path and add flow to it
while True:

p = find_augmenting_path()
if p is None:
break
else:
compute &, the amount of flow to apply along p, and apply it
# Assert: 6 >0
# Assert: [ is still a valid flow

The Integrality Lemma. If the capacities are all integers, then the
algorithm terminates, and the resulting flow on each edge is an integer.
The running time is O (val(f*) X E) where f* is a max flow.



6. Graphs and subgraphs
Lecture 17 6.1 Flow networks & (9:31) code — subgraphs
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% Algarithms tick max-flow b4 -+

< C & cl.cam.ac.uk/teaching/2223/Algorithm2/ticks/max-flow.html

Lecture 18

ecture 101 Algorithms tick: max-flow

Maximum flow with Ford-
Fulkerson / Edmonds-Karp

In this tick you will build a Ford—Fulkerson implementation from
scratch. In fact you will implement the Edmonds—Karp variant of Ford—

Fulkerson, which us readth first search (BFS) % find augmenting
paths, and which hfis O(V E?) running time.
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