
CLRS3 lemma 24.15 (used in Bellman-Ford). Consider a weighted directed

graph. Consider any shortest path from 𝑠 to 𝑡,

𝑠 = 𝑣0 → 𝑣1 → ⋯ → 𝑣𝑘 = 𝑡.

Suppose we initialize the data structure by

𝑣.dist = ∞ for all vertices other than 𝑠

𝑠.dist = 0

and then we perform a sequence of relaxation steps that includes, in order,

relaxing 𝑣0 → 𝑣1, then 𝑣1 → 𝑣2, then … then 𝑣𝑘−1 → 𝑣𝑘. After these

relaxations, and at all times thereafter, 𝑣𝑘.dist = distance(𝑠 to 𝑣𝑘).

We’ll prove by induction that, after the 𝑖th edge has been relaxed,
𝑣𝑖.dist = distance(𝑠 to 𝑣𝑖)

BASE CASE 𝑖 = 0: Note that 𝑠 = 𝑣0. We initialized 𝑠.dist = 0, and
distance 𝑠 to 𝑠 = 0, so the induction hypothesis is true.

INDUCTION STEP: …

SECTION 6.1

Flow networks

𝑡𝑣

𝑢

𝑠

𝑤

cap. 3 cap. 4
source

sink

THE FLOW PROBLEM
Consider a graph in which each edge has a capacity.
How should we assign a flow to each edge,
so as to maximize the flow value?

flow 3flow 1 X 4
flow
value
12X 13

flow
value
12X 13

УФА

ОРЕНБУРГ

ОМСК

НОВО-
СИБИРСК

СЕМИПАЛАТИНСК

ТАШКЕНТ

КЗЫЛ-ОРДА

ХИВА

Methods of finding the minimum
total kilometrage in cargo-
transportation planning in
space, A.N.Tolstoy, 1930

ORIGINS

ORIGINS

EG

The
BottleneckFundamentals of a method for evaluating rail net

capacities, T.E.Harris and F.S.Ross, 1955

NOTICE: THIS DOCUMENT CONTAINS INFORMATION
AFFECTING THE NATIONAL DEFENSE OF THE UNITED
STATES WITHIN THE MEANING OF THE ESPIONAGE LAW,
TITLE 18, U.S.C. SECTIONS 793 and 794. THE
TRANSMISSION OR THE REVELATION OF ITS CONTENTS
IN ANY MANNER TO AN UNAUTHORIZED PERSON IS
PROHIBITED BY LAW.

ORIGINS

ORIGINS

EG

The
Bottleneck

ORIGINS

ORIGINS

EG

The
Bottleneck

ORIGINS

ORIGINS

EG

The
Bottleneck

𝑡𝑣

𝑢

𝑠

𝑤

cap. 3 cap. 4

source sink

a flow 𝑓 is a set of edge labels 𝑓(𝑢 → 𝑣) such that
▪ 0 ≤ 𝑓 𝑢 → 𝑣 ≤ 𝑐(𝑢 → 𝑣) on every edge
▪ total flow in = total flow out, at all vertices other than 𝑠 and 𝑡

and the value of the flow is
▪ value(𝑓) = net flow out of 𝑠 = net flow into 𝑡

Given a directed graph with a source vertex 𝑠 and a sink vertex 𝑡, where each edge 𝑢 → 𝑣 has a capacity 𝑐 𝑢 → 𝑣 > 0,

flow 4flow 3

PROBLEM STATEMENT
Find a flow with maximum possible value (called a maximum flow).

SECTION 6.2

Ford-Fulkerson algorithm

𝑡𝑣

𝑢

𝑠

𝑤

cap. 3 cap. 4
source

sink
flow 3can

send
more flow

value
12

flow
value
12

can
send
more

can
send
more

SIMPLE GREEDY STRATEGY

Look for a path to the sink along which we can increase flow, then increase it as much as we can.
Repeat this, until we can’t reach the sink.

can send +1
along s→v→t

𝑡𝑣

𝑢

𝑠

𝑤

cap. 3 cap. 4
source

sink
flow 3

flow
value
12

flow
value
12

flow 1 X 4

X 13

X 13

SIMPLE GREEDY STRATEGY

Look for a path to the sink along which we can increase flow, then increase it as much as we can.
Repeat this, until we can’t reach the sink.

𝑡𝑏

𝑎

𝑠

𝑐

cap. 3 cap. 4

flow 4

QUESTION. Can you find a larger-value flow than this?

𝑡𝑏

𝑎

𝑠

𝑐

cap. 3 cap. 4

flow 4

Send some of
your stuff to me,
so I can siphon it

off here!

I’ll siphon some off here,
from the a→b flow. Redirect
some of your excess to t, so

they don’t notice!

Send some of your
stuff to me, so I
can siphon it off!

They’ve shown
me I can increase

my flow value!

Send some of your
stuff to me, so I
can siphon it off!

𝑡𝑏

𝑎

𝑠

𝑐

cap. 3 cap. 4

flow 4 They’ve shown
me I can increase

my flow value!

I could extract a
flow of 3 at b ...

flow 3

𝑡𝑏

𝑎

𝑠

𝑐

cap. 3 cap. 4

flow 4 They’ve shown
me I can increase

my flow value!

Or I could
extract a flow

of 3 at a ...

flow 3

𝑡𝑏

𝑎

𝑠

𝑐

cap. 3 cap. 4

flow 4 They’ve shown
me I can increase

my flow value!

I shall extract
an extra flow

of 2 at t.

flow 3flow 2

flow 2
𝑡𝑏

𝑎

𝑠

𝑐

cap. 3 cap. 4

flow 4

Ford-Fulkerson algorithm
1. Start with zero flow

2. Run bandit search to discover if the flow to 𝑡 can be increased,
and if so find an appropriate sequence of edges

3. If 𝑡 can be reached:
update the flow along those edges, then go back to step 2

4. If 𝑡 can’t be reached: terminate.

flow value has
increased by 2

𝑡𝑏

𝑎

𝑠

𝑐

𝑡𝑏

𝑎

𝑠

𝑐

cap. 3 cap. 4

flow 4

STEP 2A. Build the residual graph, which has the same
vertices as the flow network, and

▪ if 𝑓 𝑢 → 𝑣 < 𝑐 𝑢 → 𝑣 :
give the residual graph an edge 𝑢 → 𝑣
with the label “increase flow 𝑢 → 𝑣”

▪ if 𝑓 𝑢 → 𝑣 > 0:
give the residual graph an edge 𝑣 → 𝑢
with the label “decrease flow 𝑢 → 𝑣”

STEP 2B. Look for a path from 𝑠 to 𝑡 in the residual graph.
This is called an augmenting path.

inc s→b

dec b→t

STEP 3. Find an update amount 𝛿 > 0 that can be applied to
all the edges along the augmenting path. Apply it.

𝑡𝑣

𝑢

𝑠

𝑤

cap. 3 cap. 4

source sink
flow 4flow 3

EXERCISE. Find a way to increase the flow value.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
18
19
20
21
22
23
24
25
26
33
39

def ford_fulkerson(𝑔, 𝑠, 𝑡):
Let 𝑓 be a flow, initially empty
for 𝑢 → 𝑣 in g.edges:

𝑓(𝑢 → 𝑣) = 0

Define a helper function for finding an augmenting path
def find_augmenting_path():

Define the residual graph ℎ on the same vertices as 𝑔
for 𝑢 → 𝑣 in 𝑔.edges:

if 𝑓 𝑢 → 𝑣 < 𝑐(𝑢 → 𝑣): give ℎ an edge 𝑢 → 𝑣 labelled “inc 𝑢 → 𝑣”
if 𝑓 𝑢 → 𝑣 > 0: give ℎ an edge 𝑣 → 𝑢 labelled “dec 𝑢 → 𝑣”

if ℎ has a path from 𝑠 to 𝑡:
return some such path, together with the labels of its edges

else:
Let 𝑆 be the set of vertices the bandits can reach (used in the proof)
return None

Repeatedly find an augmenting path and add flow to it
while True:

p = find_augmenting_path()
if p is None:

break
else:

compute 𝛿, the amount of flow to apply along p, and apply it
Assert: 𝛿 > 0
Assert: 𝑓 is still a valid flow

The Integrality Lemma. If the capacities are all integers, then the
algorithm terminates, and the resulting flow on each edge is an integer.
The running time is 𝑂(val 𝑓∗ × 𝐸) where 𝑓∗ is a max flow.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24

