CLRS3 [emma 24.15 (used in Bellman-Ford). Consider a weighted directed
graph. Consider any shortest path from s to t,
S=Vyg >V > >V, =t
Suppose we initialize the data structure by
v.dist = oo for all vertices other than s

s.dist=0
and then we perform a sequence of relaxation steps that includes, in order,
relaxing vy = v4, then v; = v,, then ... then vj,_; = v;. After these
relaxations, and at all times thereafter, v;, . dist = distance(s to vy).

We'll prove by induction that, after the ith edge has been relaxed,
v;.dist = distance(s to v;)

BASE =

; that s = vy. We initialized s.dist = 0, and
stance(sto s) = 0,

the induction hypothesis is true.

A -V

II' rlu."’" AJT“f’A w'f.éé(
wu‘,N cyc(&, (r's POSS, |
O

fi\ou(: A{'J-GAV\U. (s fe S) =" *

INDUCTION STEP: ...

SECTION 6.1
Flow networks

sink ‘ flow

value

‘:1)!213

¢

THE FLOW PROBLEM

Consider a graph in which each edge has a capacity.
How should we assign a flow to each edge,
SO as to maximize the flow value?

chA°
()
@
OPEHBYPI S
[]
@
@
@
k3bln-ornAQ
XV1BA Q)

® Y HOBO-
O MBUPCK
® W OMCK
O
Q O 2
U
O CEMUNANATUHCK
°
@
O
O O

W TALLUKEHT

Methods of finding the minimum
total kilometrage in cargo-
transportation planning in
space, A.N.Tolstoy, 1930

Fundamentals of a method for evaluating rail net
capacities, T.E.Harris and F.S.Ross, 1955

NOTICE: THIS DOCUMENT CONTAINS INFORMATION
AFFECTING THE NATIONAL DEFENSE OF THE UNITED
STATES WITHIN THE MEANING OF THE ESPIONAGE LAW,
TITLE 18, U.S.C. SECTIONS 793 and 794. THE
TRANSMISSION OR THE REVELATION OF ITS CONTENTS
IN ANY MANNER TO AN UNAUTHORIZED PERSON IS
PROHIBITED BY LAW.

— \ |r_j ™ < { -~ ml
' e y \/ “L// \ m?':‘ i
P '// i

~owoms

-
W-2-95

SECRET yy

Fig. 7 — Troffic pottern: entire
natwork ovoiloble

Legens.

Intesnptional boundory

\/O\, Rellwoy eperating Sivipine

«:})—- Copacity: 12 eacth way per oy

Reguired Taw of 9 par 4oy towems
destinptions (s direction of orrew)
with sguivelent aumbar of retureing
HOIAN n apposite direct an

.
AN cepachtiog » ‘,.'O:,‘;', of ,,..}nu why P

Origing. Odwinions 2, 3w, 3E, 25,105,198,

12, SZIVSEN), ena Resmanie

Pestingtions: Divislom 3, 6, 0 (Founs),
BlCanehaniovovatin), ot 2. 3 (Aairia)

Alternative destinatans Sermony o Tawt
Cermuny

Nete 11X ot Dlvision 9, Poland

The

\g Bottleneck

N

lt

ORIGINS

Note 11X ot Divises 9, Foland

L AN

-7
SECRET o5 >

Fig 7 = Trotfic pottern: entire
network ovoiloble

Legens;
- — etgrnotione | Dewndery

@ Relwoy operatng Risipine

‘d]- Copacity 12 #oth way per #oy

Reguired tigw of 9 per day toward
destingtions (s girection of grrew)
e ith sguivalent aumber of returning
RIS n appenite dirertian

AN cepochtion Iw: of ,,..}nu —

Origing. Divinions 2, 3w, 3C, 25,108,100,
12, SR IVSANR), ane Resmane

Pestingtions: Divisiom 3, 6,0 (Feuss),
B iCarenosinvavatinl, ot 2 3 lAawtria)

Alternative destinatans Oermony o Lant - >
Cermany

.-. ’
o

Y

source

Given a directed graph with a source vertex s and a sink vertex t, where each edge u — v has a capacity c(u - v) > 0,

a flow f is a set of edge labels f(u = v) such that
" 0<f(u—-v)<c(u—v)oneveryedge
= total flow in = total flow out, at all vertices other than s and ¢t

and the value of the flow is
* value(f) = net flow out of s = net flow into ¢

PROBLEM STATEMENT
Find a flow with maximum possible value (called a maximum flow).

SECTION 6.2
Ford-Fulkerson algorithm

SIMPLE GREEDY STRATEGY
Look for a path to the sink along which we can increase flow, then increase it as much as we can.

Repeat this, until we can’t reach the sink.

flow

value
12

can send +1
along s—v-t

SIMPLE GREEDY STRATEGY

Look for a path to the sink along which we can increase flow, then increase it as much as we can.
Repeat this, until we can’t reach the sink.

QUESTION. Can you find a larger-value flow than this?

I'll siphon some of f here,
from the a—b flow. Redirect
some of your excess to t, so0
they don't notice!

Send some of your
stuff to me, 50 |
can siphon it of f!

They've shown
me | can increase
my flow value!

Send some of
your stuff to me,

Send some of your
stuff to me, 90 |
can siphon it of f!

They've shown
me | can increase
my flow value!

[could extract a
flow of 3 at b ...

They've shown
me | can increase
my flow value!

Or | could
extract a flow
of 3ata..

They've shown
me | can increase
my flow value!

| shall extract
an extra flow
of 2 at t.

>@%

‘ flow value has
increased by 2

Ford-Fulkerson algorithm

1.
2.

Start with zero flow

Run bandit search to discover if the flow to t can be increased,
and if so find an appropriate sequence of edges

If t can be reached:
update the flow along those edges, then go back to step 2

If t can’t be reached: terminate.

STEP 2A. Build the residual graph, which has the same
vertices as the flow network, and

» iff(u—-v)<clu-v):
give the residual graph anedge u = v
with the label “increase flow u — v”

= iff(u—-v)>0:
give the residual graph an
with the label “decrease f

STEP 2B. Look for a path from s to t in the residual graph.
This is called an augmenting path.

STEP 3. Find an update amount § > 0 that can be applied to
all the edges along the augmenting path. Apply it.

EXERCISE. Find a way to increase the flow value.

6. Graphs and subgraphs
Lecture 17 6.1 Flow networks & (9:31) code — subgraphs

A
- (A] = — A8 =EFAara (A) L

% Algarithms tick max-flow b4 -+

< C & cl.cam.ac.uk/teaching/2223/Algorithm2/ticks/max-flow.html

Lecture 18

ecture 101 Algorithms tick: max-flow

Maximum flow with Ford-
Fulkerson / Edmonds-Karp

In this tick you will build a Ford—Fulkerson implementation from
scratch. In fact you will implement the Edmonds—Karp variant of Ford—
Fulkerson, which uses breadth first search (BFS) to find augmenting
paths, and which has O(V E?) running time.

def ford_fulkerson(g, s, t):
Let f be a flow, initially empty
for u > v in g.edges:

flu-v) =0

Define a helper function for finding an augmenting path
def find_augmenting_path():
Define the residual graph h on the same vertices as g
for u > v in g.edges:
if flu—»v)<c(u-v): give h an edge u — v labelled “inc u — v”
if flu—>v)>0: give h an edge v - u labelled “dec u — v”
if h has a path from s to t:
return some such path, together with the labels of its edges
else:

Let S be the set of vertices the bandits can reach (used in the proof)
return None

Repeatedly find an augmenting path and add flow to it
while True:

p = find_augmenting_path()
if p is None:
break
else:
compute &, the amount of flow to apply along p, and apply it
Assert: 6 >0
Assert: [is still a valid flow

The Integrality Lemma. If the capacities are all integers, then the
algorithm terminates, and the resulting flow on each edge is an integer.
The running time is O (val(f*) X E) where f* is a max flow.

6. Graphs and subgraphs
Lecture 17 6.1 Flow networks & (9:31) code — subgraphs

]
- (A 1 = — ala EEFArS ANA 8 £

% Algarithms tick max-flow b4 -+

< C & cl.cam.ac.uk/teaching/2223/Algorithm2/ticks/max-flow.html

Lecture 18

ecture 101 Algorithms tick: max-flow

Maximum flow with Ford-
Fulkerson / Edmonds-Karp

In this tick you will build a Ford—Fulkerson implementation from
scratch. In fact you will implement the Edmonds—Karp variant of Ford—

Fulkerson, which us readth first search (BFS) % find augmenting
paths, and which hfis O(V E?) running time.

im) =] [2203.00671] Maximum Flow anc X | =

< O (5) https://arxiv.org/abs/2203.00671

i
El=] -~ 5 i We gratefully acknowledge support from
@E’ Cor ﬂE“ Ul“llverblt}-’ the Simons Foundation and University of Cambridge.

All fields V' Search

d I' 1V > cs > arXiv:2203.00671 TRy ——

Computer Science > Data Structures and Algorithms Download:

« PDF
Maximum Flow and Minimum-Cost Flow in Almost-Linear Time « Other formats
(license)
Li Chen, Rasmus Kyng, Yang P. Liu, Richard Peng, Maximilian Probst Gutenberg, Sushant Sachdeva Current browse context:
cs.DS
We give an algorithm that computes exact maximum flows and minimum-cost flows on directed graphs with 1 edges <prev. | next=

[Submitted on 1 Mar 2022 (v1), last revised 22 Apr 2022 (this version, v2)]

and polynomially bounded integral demands, costs, and capacities in mite) time. Our algorithm builds the flow new | recent | 2203
Change to browse by:
Cs

through a sequence of mlitell) approximate undirected minimum-ratio cycles, each of which is computed and
processed in amortized m°1) time using a new dynamic graph data structure.

Our framework extends to algorithms running in m!+°(1) time for computing flows that minimize general edge- References & Citations

separable convex functions to high accuracy. This gives almost-linear time algorithms for several problems including * NASAADS
» Google Scholar
s Semantic Scholar

5 blog links {what is this?)

entropy-regularized optimal transport, matrix scaling, p-norm flows, and p-norm isotonic regression on arbitrary
directed acyclic graphs.

Subjects: Data Structures and Algorithms (¢5.DS) Export Bibtex Citation
Citeas: arXiv:2203.00671 [es.DS]
(or arXiv:2203 0067 1v2 [es.DS] for this version) g E ,,;_::,
https://doi org/10.48550/arXiv. 2203 00671 o) '

Bookmark

Submission history
From: Li Chen [view email]

~ [[Oi- 40 -

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24

