
CLRS3 lemma 24.15 (used in Bellman-Ford). Consider a weighted directed 

graph. Consider any shortest path from 𝑠 to 𝑡,

𝑠 = 𝑣0 → 𝑣1 → ⋯ → 𝑣𝑘 = 𝑡.

Suppose we initialize the data structure by

𝑣.dist = ∞ for all vertices other than 𝑠

𝑠.dist = 0

and then we perform a sequence of relaxation steps that includes, in order, 

relaxing 𝑣0 → 𝑣1, then 𝑣1 → 𝑣2, then … then 𝑣𝑘−1 → 𝑣𝑘. After these 

relaxations, and at all times thereafter, 𝑣𝑘.dist = distance(𝑠 to 𝑣𝑘).

We’ll prove by induction that, after the 𝑖th edge has been relaxed, 
𝑣𝑖.dist = distance(𝑠 to 𝑣𝑖)

BASE CASE 𝑖 = 0: Note that 𝑠 = 𝑣0. We initialized 𝑠.dist = 0, and 
distance 𝑠 to 𝑠 = 0, so the induction hypothesis is true.

INDUCTION STEP: …



SECTION 6.1

Flow networks
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THE FLOW PROBLEM
Consider a graph in which each edge has a capacity.
How should we assign a flow to each edge,
so as to maximize the flow value?
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a flow 𝑓 is a set of edge labels 𝑓(𝑢 → 𝑣) such that
▪ 0 ≤ 𝑓 𝑢 → 𝑣 ≤ 𝑐(𝑢 → 𝑣) on every edge
▪ total flow in = total flow out, at all vertices other than 𝑠 and 𝑡

and the value of the flow is
▪ value(𝑓) = net flow out of 𝑠 = net flow into 𝑡

Given a directed graph with a source vertex 𝑠 and a sink vertex 𝑡, where each edge 𝑢 → 𝑣 has a capacity 𝑐 𝑢 → 𝑣 > 0,

flow 4flow 3

PROBLEM STATEMENT 
Find a flow with maximum possible value (called a maximum flow).



SECTION 6.2

Ford-Fulkerson algorithm
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SIMPLE GREEDY STRATEGY

Look for a path to the sink along which we can increase flow, then increase it as much as we can.
Repeat this, until we can’t reach the sink.

can send +1
along s→v→t
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SIMPLE GREEDY STRATEGY

Look for a path to the sink along which we can increase flow, then increase it as much as we can.
Repeat this, until we can’t reach the sink.
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QUESTION. Can you find a larger-value flow than this? 
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Send some of 
your stuff to me, 
so I can siphon it 

off here!

I’ll siphon some off here, 
from the a→b flow. Redirect 
some of your excess to t, so 

they don’t notice!

Send some of your 
stuff to me, so I 
can siphon it off!

They’ve shown 
me I can increase 

my flow value!

Send some of your 
stuff to me, so I 
can siphon it off!
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Ford-Fulkerson algorithm
1. Start with zero flow

2. Run bandit search to discover if the flow to 𝑡 can be increased,
and if so find an appropriate sequence of edges

3. If 𝑡 can be reached: 
update the flow along those edges, then go back to step 2

4. If 𝑡 can’t be reached: terminate.

flow value has 
increased by 2
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STEP 2A. Build the residual graph, which has the same 
vertices as the flow network, and

▪ if 𝑓 𝑢 → 𝑣 < 𝑐 𝑢 → 𝑣 :
give the residual graph an edge 𝑢 → 𝑣
with the label “increase flow 𝑢 → 𝑣”

▪ if 𝑓 𝑢 → 𝑣 > 0: 
give the residual graph an edge 𝑣 → 𝑢
with the label “decrease flow 𝑢 → 𝑣”

STEP 2B. Look for a path from 𝑠 to 𝑡 in the residual graph. 
This is called an augmenting path.

inc s→b

dec b→t

STEP 3. Find an update amount 𝛿 > 0 that can be applied to 
all the edges along the augmenting path. Apply it.
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EXERCISE. Find a way to increase the flow value.
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def ford_fulkerson(𝑔, 𝑠, 𝑡):
# Let 𝑓 be a flow, initially empty
for 𝑢 → 𝑣 in g.edges:

𝑓(𝑢 → 𝑣) = 0

# Define a helper function for finding an augmenting path
def find_augmenting_path():

# Define the residual graph ℎ on the same vertices as 𝑔
for 𝑢 → 𝑣 in 𝑔.edges:

if 𝑓 𝑢 → 𝑣 < 𝑐(𝑢 → 𝑣): give ℎ an edge 𝑢 → 𝑣 labelled “inc 𝑢 → 𝑣”
if 𝑓 𝑢 → 𝑣 > 0: give ℎ an edge 𝑣 → 𝑢 labelled “dec 𝑢 → 𝑣”

if ℎ has a path from 𝑠 to 𝑡:
return some such path, together with the labels of its edges

else:
# Let 𝑆 be the set of vertices the bandits can reach (used in the proof)
return None

# Repeatedly find an augmenting path and add flow to it
while True:

p = find_augmenting_path()
if p is None:

break
else:

compute 𝛿, the amount of flow to apply along p, and apply it
# Assert: 𝛿 > 0
# Assert: 𝑓 is still a valid flow

The Integrality Lemma. If the capacities are all integers, then the 
algorithm terminates, and the resulting flow on each edge is an integer. 
The running time is 𝑂(val 𝑓∗ × 𝐸) where 𝑓∗ is a max flow.
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