
SECTION 5.6

Bellman-Ford

How can we find minimum-cost paths in 
graphs where some edge costs weights may 
be negative?



Dijkstra Bellman-Ford

Can get stuck in ∞ loop if 
some weights are –ve

always terminates

𝑂(𝐸 + 𝑉 log𝑉)
if all weights ≥0

𝑂(𝑉 𝐸)
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SECTION 5.7

Dynamic programming





value function



Value function
Let 𝐹(𝑣) be the expected future reward that 
can be gained starting from state 𝑣

Bellman equation

𝐹 𝑣 = max
𝑎

reward𝑣,𝑎 + 𝐹(nextstate𝑣,𝑎)
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Theorem
Let 𝑔 be a directed graph where each edge is labelled with a weight. 
Assume 𝑔 has no –ve weight cycles.

Then, 𝐹𝑑,𝑉−1(𝑣) is the minimum weight from 𝑣 to 𝑑
(over paths of any length).

Algorithm
Solve the Bellman recurrence equation.
[There’s a nifty matrix trick for solving it for all pairs of vertices in 𝑂(𝑉3 log 𝑉).]
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value function

Playing Atari with Deep Reinforcement Learning, 
Silver et al., 2013. For interesting games it’s impractical to 
solve 𝐹(⋅) exactly using Bellman’s recursion; instead 
DeepMind used a neural network to approximate 𝐹(⋅).



SECTION 5.8

Johnson’s algorithm



P

Definition
The betweenness centrality 
of an edge is the number of 
shortest paths that use that 
edge, considering paths 
between all pairs of vertices 
in the graph
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𝑉 × Dijkstra 𝑉 × 𝑂(𝐸 + 𝑉 log 𝑉)

𝑉 × Bellman-Ford 𝑉 × 𝑂(𝑉 𝐸)

Dynamic 
programming
(with cunning matrix trick)

𝑂(𝑉3 log 𝑉)

What’s the cost of finding all-to-all minimum weights?
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Johnson same as Dijkstra,
but works with –ve edge weights
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1. The augmented graph
Add a new vertex 𝑠, and run Bellman-Ford 
to compute minimum weights from 𝑠,

𝑑𝑣 = minweight(𝑠 to 𝑣)
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0 2. The helper graph
Define a new graph with modified 
edge weights
𝑤′ 𝑢 → 𝑣 = 𝑑𝑢 + 𝑤 𝑢 → 𝑣 − 𝑑𝑣
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0. The graph where we want all-to-all minweights
Let the edge weights be  𝑤(𝑢 → 𝑣)

3. Run Dijkstra to get all-to-all distances in 
the helper graph, distance′(𝑢 to 𝑣)

4. Translation
minweight 𝑝 to 𝑞 = distance′ 𝑝 to 𝑞 − 𝑑𝑝 + 𝑑𝑞
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𝑑𝑣 = minweight(𝑠 to 𝑣)

3

2

3

0
0 7

0

𝑤′ 𝑢 → 𝑣 = 𝑑𝑢 +𝑤 𝑢 → 𝑣 − 𝑑𝑣

Lemma. The edge weights in the helper graph are all ≥ 0
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edge weights 𝑤(𝑢 → 𝑣)
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original: helper:



𝑤′ 𝑢 → 𝑣 = 𝑑𝑢 + 𝑤 𝑢 → 𝑣 − 𝑑𝑣
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edge weights 𝑤(𝑢 → 𝑣)
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Lemma. The translation step computes correct minweights:

minweight 𝑝 to 𝑞 = distance′ 𝑝 to 𝑞 − 𝑑𝑝 + 𝑑𝑞
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original: helper:
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