SECTION 5.6
 Bellman-Ford

How can we find minimum-cost paths in graphs where some edge eests weights may be negative?

Dijkstra

Can get stuck in ∞ loop if some weights are -ve
$O(E+V \log V)$
if all weights ≥ 0

Bellman-Ford

always terminates
$O(V E)$

SECTION 5.7

Dynamic programming

Let $F(v)$ be the expected future reward that can be gained starting from state v

Bellman equation
$F(v)=\max _{a}\left\{\operatorname{reward}_{v, a}+F\left(\right.\right.$ nextstate $\left.\left._{v, a}\right)\right\}$

Theorem

Let g be a directed graph where each edge is labelled with a weight.
Assume g has no -ve weight cycles.
Then, $F_{d, V-1}(v)$ is the minimum weight from v to d
(over paths of any length).

Algorithm

Solve the Bellman recurrence equation.
[There's a nifty matrix trick for solving it for all pairs of vertices in $O\left(V^{3} \log V\right)$.]
 Silver et al., 2013. For interesting games it's impractical to solve $F(\cdot)$ exactly using Bellman's recursion; instead DeepMind used a neural network to approximate $F(\cdot)$.

SECTION 5.8 Johnson's algorithm

Definition

The betweenness centrality of an edge is the number of shortest paths that use that edge, considering paths betweerall pairs of vertires in the graph

What's the cost of finding all-to-all minimum weights?

$V \times$ Dijkstra
$V \times O(E+$
$V \times O(V E)$
$O\left(v^{2} \log v\right)$
$O\left(v^{3}\right)$
$V \times$ Bellman-Ford $\quad V \times O(V E)$
$O\left(V^{3}\right)$
$O\left(v^{4}\right)$
$O\left(v^{3} \log v\right) O\left(v^{3} \log v\right)$
$O\left(v^{3} \log v\right) O\left(v^{3} \log v\right)$
programming
(with cunning matrix trick)
Johnson
$O\left(V^{3} \log V\right)$
same as Dijkstra,
but works with -eve edge weights

0 . The graph where we want all-to-all minweights

Let the edge weights be $w(u \rightarrow v)$

1. The augmented graph

Add a new vertex s, and run Bellman-Ford to compute minimum weights from s,

$$
d_{v}=\operatorname{minweight}(s \text { to } v)
$$

2. The helper graph

Define a new graph with modified edge weights

$$
w^{\prime}(u \rightarrow v)=d_{u}+w(u \rightarrow v)-d_{v}
$$

3. Run Dijkstra to get all-to-all distances in the helper graph, distance' $(u$ to $v)$

4. Translation

$\operatorname{minweight}(p$ to $q)=\operatorname{distance}^{\prime}(p$ to $q)-d_{p}+d_{q}$

edge weights $w(u \rightarrow v)$
0

$d_{v}=\operatorname{minweight}(s$ to $v)$

Lemma. The translation step computes correct minweights:
$\operatorname{minweight}(p$ to $q)=\operatorname{distance}^{\prime}(p$ to $q)-d_{p}+d_{q}$

edge weights $w(u \rightarrow v)$
$w^{\prime}(u \rightarrow v)=d_{u}+w(u \rightarrow v)-d_{v}$

