
SECTION 5.6

Bellman-Ford

How can we find minimum-cost paths in
graphs where some edge costs weights may
be negative?

Dijkstra Bellman-Ford

Can get stuck in ∞ loop if
some weights are –ve

always terminates

𝑂(𝐸 + 𝑉 log𝑉)
if all weights ≥0

𝑂(𝑉 𝐸)

page 22

SECTION 5.7

Dynamic programming

value function

Value function
Let 𝐹(𝑣) be the expected future reward that
can be gained starting from state 𝑣

Bellman equation

𝐹 𝑣 = max
𝑎

reward𝑣,𝑎 + 𝐹(nextstate𝑣,𝑎)

a b

c

d

1

2

3

-4

4
page 24

Theorem
Let 𝑔 be a directed graph where each edge is labelled with a weight.
Assume 𝑔 has no –ve weight cycles.

Then, 𝐹𝑑,𝑉−1(𝑣) is the minimum weight from 𝑣 to 𝑑
(over paths of any length).

Algorithm
Solve the Bellman recurrence equation.
[There’s a nifty matrix trick for solving it for all pairs of vertices in 𝑂(𝑉3 log 𝑉).]

page 25

value function

Playing Atari with Deep Reinforcement Learning,
Silver et al., 2013. For interesting games it’s impractical to
solve 𝐹(⋅) exactly using Bellman’s recursion; instead
DeepMind used a neural network to approximate 𝐹(⋅).

SECTION 5.8

Johnson’s algorithm

P

Definition
The betweenness centrality
of an edge is the number of
shortest paths that use that
edge, considering paths
between all pairs of vertices
in the graph

page 27

𝑉 × Dijkstra 𝑉 × 𝑂(𝐸 + 𝑉 log 𝑉)

𝑉 × Bellman-Ford 𝑉 × 𝑂(𝑉 𝐸)

Dynamic
programming
(with cunning matrix trick)

𝑂(𝑉3 log 𝑉)

What’s the cost of finding all-to-all minimum weights?

page 27

Johnson same as Dijkstra,
but works with –ve edge weights

0

0 0 0

0

S

0

0

-2

-3

0

1. The augmented graph
Add a new vertex 𝑠, and run Bellman-Ford
to compute minimum weights from 𝑠,

𝑑𝑣 = minweight(𝑠 to 𝑣)

3

2

3

0
0 7

0 2. The helper graph
Define a new graph with modified
edge weights
𝑤′ 𝑢 → 𝑣 = 𝑑𝑢 + 𝑤 𝑢 → 𝑣 − 𝑑𝑣

3

2

1

-2
-1 4

-2
0. The graph where we want all-to-all minweights
Let the edge weights be 𝑤(𝑢 → 𝑣)

3. Run Dijkstra to get all-to-all distances in
the helper graph, distance′(𝑢 to 𝑣)

4. Translation
minweight 𝑝 to 𝑞 = distance′ 𝑝 to 𝑞 − 𝑑𝑝 + 𝑑𝑞

page 28

0

0 0 0

0

S

𝑑𝑣 = minweight(𝑠 to 𝑣)

3

2

3

0
0 7

0

𝑤′ 𝑢 → 𝑣 = 𝑑𝑢 +𝑤 𝑢 → 𝑣 − 𝑑𝑣

Lemma. The edge weights in the helper graph are all ≥ 0

3

2

1

-2
-1 4

-2

edge weights 𝑤(𝑢 → 𝑣)

page 28

original: helper:

𝑤′ 𝑢 → 𝑣 = 𝑑𝑢 + 𝑤 𝑢 → 𝑣 − 𝑑𝑣

3

2

1

-2
-1 4

-2

edge weights 𝑤(𝑢 → 𝑣)

3

2

3

0
0 7

0

Lemma. The translation step computes correct minweights:

minweight 𝑝 to 𝑞 = distance′ 𝑝 to 𝑞 − 𝑑𝑝 + 𝑑𝑞

page 28

original: helper:

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14

