page 14
Theorem.

i. Dijkstra’s algorithm terminates
ii. Whenitdoes, for every vertex v, v.distance = distance(s to v)

iii. The two assertions never fail

def dijkstra(g, s):
for v in g.vertices:
v.distance = o
s.distance = 0
toexplore = PriorityQueue([s], sortkey = Av: v.distance)

while not toexplore.is_empty():
v = toexplore.popmin()

O 4 OOl & WN =

(w,edgecost) in v.neighbours:
dist_w = v.distance + edgecost
if dist_w < w.distance:
w.distance = dist_w
if w in toexplore:
toexplore.decreasekey(w)
else:
toexplore.push(w)

Assertion line 9.

Just after a vertex v is popped, v.distance = distance(s to v)

LAST LECTURE
The “breakpoint” proof strategy

1. Decide on a property we want to be true at all times
2. Assume it’strueuptotimeT — 1

3. Show that it must therefore be true at time T

Assertion line 10.

A vertex v, once popped, is never put back
into the priority queue

v = toexplore.popmin()

for (w,edgecost) in v.neighbours:
dist_w = v.distance + edgecost
if dist_w < w.distance:
w.distance = dist_w
if w in toexplore:
toexplore.decreasekey(w)
else:
toexplore.push(w)

Theorem.

i. Dijkstra’s algorithm terminates

ii. When it does, for every vertex v, v.distance = distance(s to v)

iii. The two assertions never fail \/

i. Since vertices can never be pushed back into the priority queue (assertion 10),
and there are only finitely many vertices, the algorithm must terminate.

ii. Any vertex v, at the time it is popped, has the correct v.distance (assertion 9).
It remains to prove ...

After v has been popped, v.distance doesn’t change subsequently

Every vertex that’s reachable from s will eventually get pushed
into the queue, then popped

SECTION 5.5
Algorithms and proofs

Example sheet 4

Graphs and path finding
Algorithms—DJW*-2022/2023

Question 6. Modify bfs_path(g, s,) to find all shortest paths from s to ¢. [There is a tester, linked to on the course
website, for you to check your code. |

Jo

M

53

New chat X

Crow and Dryad's Dance

Maximizing UK's Prosperity F

Jack and Finnegan

Story Of Mysterious Superna

Light Modern Dinner Party v

BFS Shortest Path Algorithm

Clear conversations
Upgrade to Plus NEW
Dark mode

Updates & FAQ

Log out

;//chat.openai.com/chat

+

‘(I)’
Pty

Examples

"Explain quantum
computing in simple
terms" —

"Got any creative
ideas for a 10 year
old’s birthday?" —

"How do | make an
HTTP request in
Javascript?" —

A @

ChatGPT

%

Capabilities

Remembers what user
said earlier in the
conversation

Allows user to provide
follow-up corrections

Trained to decline
inappropriate
requests

Limitations

May occasionally
generate incorrect
information

May occasionally
produce harmful
instructions or biased
content

Limited knowledge of
world and events after
2021

Give pseudocode for an algorithm that
finds all shortest paths between a given pair
of nodes, on a directed graph.

Here is the pseudocode for finding all shortest paths between a given pair of

nodes using Breadth-First Search (BFS) algorithm:
m Copy code

BFS shortest paths(graph, start, end):
queue [1
paths [1
visited = set()
queue.append((start, [start]))

visited.add(start)

while queue:
node, path = queue.pop(9)
if node == end:
paths.append(path)
for neighbor in graph[node]:
if neighbor not in visited:
queue.append((neighbor, path + [neighbor]))

visited.add(neighbor)

return paths

Note: The ~graph™ variable is a dictionary where each key is a node and its

values are a list of neighbors of that node. The “start™ and ~end" variables are

the nodes between which the shortest paths are to be found.

Himise - Xbelard

Abelard and Eloise,
Edmund Blair Leighton (1882)

Here is the pseudocode for finding all shortest paths between a given pair of

nodes using Breadth-First Search (BFS) algorithm:
m Copy code

BFS shortest paths(graph, start, end):
queue [1
paths [1
visited = set()
queue.append((start, [start]))

visited.add(start)

while queue:
node, path = queue.pop(9)
if node == end:
paths.append(path)
for neighbor in graph[node]:
if neighbor not in visited:
queue.append((neighbor, path + [neighbor]))

visited.add(neighbor)

return paths

Note: The ~graph™ variable is a dictionary where each key is a node and its

values are a list of neighbors of that node. The “start™ and ~end" variables are

the nodes between which the shortest paths are to be found.

DW

This code is meant to find all shortest paths between a pair of nodes in a graph.
However, the code is incorrect. What is the problem with this code?

The problem with this code is that it does not necessarily find all shortest paths
between the given pair of nodes in the graph.

The code uses Breadth-First Search (BFS) to explore the graph and finds the
shortest path from the start node to the end node. However, it only adds the
first path that it finds to the “paths’ list, and does not continue searching for
other shortest paths.

To find all shortest paths between the given pair of nodes, the code needs to be
modified to continue searching for other paths after finding the first shortest
path. One way to do this is to use a ‘visited" set to keep track of the visited
nodes and add all paths with the same length as the shortest path found so far
to the “paths’ list.

Modify the code to continue searching for other paths after finding the first
shortest path. Do this by using a "visited™ set to keep track of the visited nodes
and add all paths with the same length as the shortest path found so far to the
‘paths’ list.

Here is a modified version of the code that uses a “visited™ set to keep track of the visited nodes and adds all paths

with the same length as the shortest path found so far to the ~paths™ list:

V]) Copy code
def bfs_shortest_paths(graph, start, end):
queue = [(start, [start])]

paths []1

visited = set()

visited.add(start)
shortest_path_length = float(inf')

while queue:

node, path = queue.pop(©)

if node == end:
if len(path) == shortest path_length:
paths.append(path)
elif len(path) < shortest_path_length:
shortest _path_length = len(path)
paths = [path]

for neighbor in graph[node]:
if neighbor not in visited:
queue.append((neighbor, path + [neighbor]))

visited.add(neighbor)

return paths

Efpﬂ Algorithms challenge chatgpt-bt X +

< C' @& clcam.ac.uk/teaching/2223/Algorithm2/ticks... 2 Y O

Algorithms challenge: chatgpt-bfs
Ask ChatGPT to write a graph algorithm

Find prompts that instruct ChatGPT to produce a valid algorithm for solving tick bfs-all.

You should run the algorithm through the tester for bfs-all. You may make syntactical tweaks if
necessary to turn the code into valid Python. If your algorithm passes the tester, well done! But even if
it doesn’t, you are encouraged to submit your attempt.

Submit a text document (.txt, .rtf, .docx, .odt) containing both sides of your dialogue, including the
finished algorithm, on Moodle.

Bonus: find prompts that instruct ChatGPT to give a valid proof that its algorithm is correct.

Programming is one of the most difficult
branches of applied mathematics; the
poorer mathematicians had better
remain pure mathematicians.

Edsger Dijkstra,
How do we tell truths that might hurt?

Give a proof that this algorithm is correct.

This algorithm uses Breadth-First Search (BFS) to find all shortest paths between a given pair of nodes
on a directed graph. BFS works by exploring all nodes at a given distance from the start node before
moving on to nodes that are farther away. The distance from the start node to a node is defined as the
number of edges in the shortest path from the start node to that node.

Here is the proof that the algorithm is correct:

1. Initialization: The "queue’ is initialized with the start node and its corresponding path, and the
“distance” dictionary is initialized with the start node and its distance of 0.

2. Termination: The algorithm terminates when the queue is empty. This means that all reachable
nodes have been explored and all shortest paths have been found.

3. Correctness: At each step of the algorithm, the node and path popped from the front of the queue
correspond to the node and path with the smallest distance from the start node. When a node is
popped from the queue and it is the end node, its corresponding path is added to the “paths’ list.
When a neighbor of the node is explored for the first time, its distance is updated in the “distance’
dictionary, and its corresponding path is added to the queue. This ensures that the algorithm only
explores the shortest paths and does not revisit any node.

Therefore, the algorithm correctly finds all shortest paths between the given pair of nodes on the
directed graph using BFS.

Types of proof

Right
Wrong ste

incorrect deduction, correct conclusion

Wrong
Wrong result

incorrect conclusion

Not even wrong

Wolfgang Pauli (1900-1958)

“Das ist nicht nur nicht richtig;
es ist nicht einmal falsch”

page 19

Exam question. Let dijkstra_path(g,s,t) be an implementation of
Dijkstra’s shortest path algorithm that returns the shortest path from
vertex s to vertex t in a graph g. Prove that the implementation can safely
terminate when it first encounters vertex t.

BAD ANSWER.

At the moment when the vertex t is popped from the priority queue, it
has to be the vertex in the priority queue with the least distance from s.
This means that any other vertex in the priority queue has distance =
that for t. Since all edge weights in the graph are = 0, any path from s to
t via anything still in the priority queue will have distance = that of the
distance from s to t when it is popped, thus the distance to t is correct
when t is popped.

dist=oo
\ ‘U ¢
o= \\-f’%‘
cost 2 cost 3 AR
1% > L)
dist=0 dist=2 dist=5
N J N J

' N
already popped in priority queue

EXERCISE

Diagnose the other bad proofs in
section 5.5 of notes.

(Remember 3loisel)

SECTION 5.6
Bellman-Ford

How can we find minimum-cost paths in
graphs where some edge costs may be
hegative?

*—o
——o

O &S

T O o0
O—0

O—0
I

page 21

game states where we’ve
drunk the potion

game states where we’ve
not drunk the potion

= the “drink potion” edge h

= all other edges have cost 1

What is t msto t?

lak § Use termg ~ edge W"']“"
omd " minimum W‘f‘,u rq/"\..

page 21

What's the issue with negative edge weights?

weight(s >t > u) =4
weight(s >t > (u—-v->t)-u)=3

weight(s > t-> (u-v-t) > (u-v-t)-u) =2

minweight(s - u) = —oo

A cycle o weu:,l\t -|

EXERCISE (ex4 q13)
Run Dijkstra’s algorithm by hand on
these two graphs. What happens?

We, /
@%2 Y
minweight=15 @

minweight?l’
\7

page 22

Edge relaxation

We're looking for minimum-weight paths from s

Let’s store the minimum weight of any path we’ve found so far
in the minweight variable at each vertex

if w.minweight + weight(u = v) < v.minweight:
let v.minweight = u.minweight + weight(u — v)

Bellman-Ford algorithm
Just keep on relaxing all the edges in the graph, over and over again!
(It only takes IV rounds.)

We, /
<::>\f3332 /
minweight=15 @

def bf(g, s): page 22

for every vertex v:
v.minweight = o
s.minweight = 0@

repeat |V|-1 times:
for every edge e in the graph:
relax e

for every edge e in the graph:
relax e

if this final pass results in a change:
throw “negative-weight cycle detected”
else:
return the v.minweight values

Theorem

Eﬁélrm @mégt@cfgrﬂgg Wtﬂbr@each edge is labelled with a weight,
iR spaananstalaiegtall the edges in the graph, over and over again!
Wt anly kakesd-veunsight cycles reachable from s, this algorithm
finds the true minimum weight from s to every other vertex
otherwise, it throws an exception

Example sheet 4
Graphs and path finding

Algorithms—DJW*-2022/2023

Question 19%. The Bellman-Ford code given in lecture notes will report “Negative cycle detected” if there is a negative-
weight cycle reachable from the start vertex. Modify the code so that, in such cases, it returns a negative-weight cycle,
rather than just reporting that one exists. [There is a tester, linked to on the course website, for you to check your code.]

@ Algorithms tick bf-cycle X +

c & cl.cam.ac.uk/teaching/2223/Algorithm2/ticks/bf-cycle.html

Algorithms tick: bf-cycle
Find a negative-weight cycle

The Bellman-Ford code given in lecture notes will report “Negative cycle detected” if there is a negative-
weight cycle reachable from the start vertex. Modify the code so that, in such cases, it returns a negative-
weight cycle, rather than just reporting that one exists.

Please submit a source file bf_cycle.py on Moodle. It should implement a function

bf(g, s)

The graph g is stored as an adjacency dictionary, forexample g = {'a':{'b':3,'c':-2}, b:{}, 'c':
{'a':-1}}.Ithas a key for every vertex, and the corresponding value is a dictionary of that vertex’s
neighbours with the corresponding edge weight.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21: What’s the issue with negative edge weights?
	Slide 22
	Slide 23
	Slide 24
	Slide 25

