
Theorem.

i. Dijkstra’s algorithm terminates

ii. When it does, for every vertex 𝑣, 𝑣.distance = distance(𝑠 to 𝑣)

iii. The two assertions never fail

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

def dijkstra(g, s):
for v in g.vertices:

v.distance = ∞
s.distance = 0
toexplore = PriorityQueue([s], sortkey = 𝜆v: v.distance)

while not toexplore.is_empty():
v = toexplore.popmin()
Assert: v.distance is distance(s to v)
Assert: v is never put back into toexplore
for (w,edgecost) in v.neighbours:

dist_w = v.distance + edgecost
if dist_w < w.distance:

w.distance = dist_w
if w in toexplore:

toexplore.decreasekey(w)
else:

toexplore.push(w)

page 14

LAST LECTURE

The “breakpoint” proof strategy

1. Decide on a property we want to be true at all times

2. Assume it’s true up to time 𝑇 − 1

3. Show that it must therefore be true at time 𝑇

Assertion line 9.
Just after a vertex 𝑣 is popped, 𝑣.distance = distance(𝑠 to 𝑣)

page 14

Assertion line 10.
A vertex 𝑣, once popped, is never put back
into the priority queue

8 v = toexplore.popmin()
9 # Assert: v.distance is distance(s to v)

10 # Assert: v is never put back into toexplore
11 for (w,edgecost) in v.neighbours:
12 dist_w = v.distance + edgecost
13 if dist_w < w.distance:
14 w.distance = dist_w
15 if w in toexplore:
16 toexplore.decreasekey(w)
17 else:
18 toexplore.push(w)

page 15

Theorem.

i. Dijkstra’s algorithm terminates

ii. When it does, for every vertex 𝑣, 𝑣.distance = distance(𝑠 to 𝑣)

iii. The two assertions never fail

i. Since vertices can never be pushed back into the priority queue (assertion 10),
and there are only finitely many vertices, the algorithm must terminate.

ii. Any vertex 𝑣, at the time it is popped, has the correct 𝑣.distance (assertion 9).
It remains to prove …
▪ After 𝑣 has been popped, 𝑣.distance doesn’t change subsequently

▪ Every vertex that’s reachable from 𝑠 will eventually get pushed
into the queue, then popped

page 15

SECTION 5.5

Algorithms and proofs

Give pseudocode for an algorithm that
finds all shortest paths between a given pair
of nodes, on a directed graph.

Abelard and Eloise,
Edmund Blair Leighton (1882)

∃loise ∀belardEloise Abelard

This code is meant to find all shortest paths between a pair of nodes in a graph.
However, the code is incorrect. What is the problem with this code?

The problem with this code is that it does not necessarily find all shortest paths
between the given pair of nodes in the graph.

The code uses Breadth-First Search (BFS) to explore the graph and finds the
shortest path from the start node to the end node. However, it only adds the
first path that it finds to the `paths` list, and does not continue searching for
other shortest paths.

To find all shortest paths between the given pair of nodes, the code needs to be
modified to continue searching for other paths after finding the first shortest
path. One way to do this is to use a `visited` set to keep track of the visited
nodes and add all paths with the same length as the shortest path found so far
to the `paths` list.

Modify the code to continue searching for other paths after finding the first
shortest path. Do this by using a `visited` set to keep track of the visited nodes
and add all paths with the same length as the shortest path found so far to the
`paths` list.

Programming is one of the most difficult
branches of applied mathematics; the
poorer mathematicians had better
remain pure mathematicians.

Edsger Dijkstra,
How do we tell truths that might hurt?

Give a proof that this algorithm is correct.

This algorithm uses Breadth-First Search (BFS) to find all shortest paths between a given pair of nodes
on a directed graph. BFS works by exploring all nodes at a given distance from the start node before
moving on to nodes that are farther away. The distance from the start node to a node is defined as the
number of edges in the shortest path from the start node to that node.

Here is the proof that the algorithm is correct:

1. Initialization: The `queue` is initialized with the start node and its corresponding path, and the
`distance` dictionary is initialized with the start node and its distance of 0.

2. Termination: The algorithm terminates when the queue is empty. This means that all reachable
nodes have been explored and all shortest paths have been found.

3. Correctness: At each step of the algorithm, the node and path popped from the front of the queue
correspond to the node and path with the smallest distance from the start node. When a node is
popped from the queue and it is the end node, its corresponding path is added to the `paths` list.
When a neighbor of the node is explored for the first time, its distance is updated in the `distance`
dictionary, and its corresponding path is added to the queue. This ensures that the algorithm only
explores the shortest paths and does not revisit any node.

Therefore, the algorithm correctly finds all shortest paths between the given pair of nodes on the
directed graph using BFS.

Right

Wrong

Not even wrong

Wolfgang Pauli (1900-1958)

“Das ist nicht nur nicht richtig;
es ist nicht einmal falsch”

Wrong step
incorrect deduction, correct conclusion

Wrong result
incorrect conclusion

Types of proof

Exam question. Let dijkstra_path(𝑔,𝑠,𝑡) be an implementation of

Dijkstra’s shortest path algorithm that returns the shortest path from

vertex 𝑠 to vertex 𝑡 in a graph 𝑔. Prove that the implementation can safely

terminate when it first encounters vertex 𝑡.

BAD ANSWER.

At the moment when the vertex 𝑡 is popped from the priority queue, it

has to be the vertex in the priority queue with the least distance from 𝑠.

This means that any other vertex in the priority queue has distance ≥

that for 𝑡. Since all edge weights in the graph are ≥ 0, any path from 𝑠 to

𝑡 via anything still in the priority queue will have distance ≥ that of the

distance from 𝑠 to 𝑡 when it is popped, thus the distance to 𝑡 is correct

when 𝑡 is popped.

𝑠 𝑣

𝑢

𝑡
cost 2 cost 3

dist=0 dist=2

dist=∞

dist=5

page 19

already popped in priority queue

EXERCISE

Diagnose the other bad proofs in
section 5.5 of notes.

(Remember ∃loise!)

SECTION 5.6

Bellman-Ford

How can we find minimum-cost paths in
graphs where some edge costs may be
negative?

𝑡

𝑠

game states where we’ve
drunk the potion

+5

game states where we’ve
not drunk the potion

𝑠𝑡

▪ the “drink potion” edge has cost -5
▪ all other edges have cost 1

What is the minimum cost path from 𝑠 to 𝑡?

page 21

What’s the issue with negative edge weights?

𝑠

weight 𝑠 → 𝑡 → 𝑢 = 4

weight 𝑠 → 𝑡 → (𝑢 → 𝑣 → 𝑡) → 𝑢 = 3

weight 𝑠 → 𝑡 → (𝑢 → 𝑣 → 𝑡) → (𝑢 → 𝑣 → 𝑡) → 𝑢 = 2

minweight 𝑠 → 𝑢 = −∞

𝑡

𝑢

𝑣

page 21

EXERCISE (ex4 q13)
Run Dijkstra’s algorithm by hand on
these two graphs. What happens?

𝑠

𝑠

𝑠

𝑢

𝑣minweight=15

minweight=21

Edge relaxation

We’re looking for minimum-weight paths from 𝑠

Let’s store the minimum weight of any path we’ve found so far
in the minweight variable at each vertex

if 𝑢.minweight + weight(𝑢 → 𝑣) < 𝑣.minweight:
let 𝑣.minweight = 𝑢.minweight + weight(𝑢 → 𝑣)

Bellman-Ford algorithm
Just keep on relaxing all the edges in the graph, over and over again!
(It only takes 𝑉 rounds.)

page 22

𝑠

𝑢

𝑣minweight=15

minweight=21

Bellman-Ford algorithm
Just keep on relaxing all the edges in the graph, over and over again!
(It only takes 𝑉 rounds.)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

def bf(g, s):
for every vertex v:

v.minweight = ∞
s.minweight = 0

repeat |V|-1 times:
for every edge e in the graph:

relax e

for every edge e in the graph:
relax e

if this final pass results in a change:
throw “negative-weight cycle detected”

else:
return the v.minweight values

Theorem
Given a directed graph 𝑔 where each edge is labelled with a weight,
and given a start vertex 𝑠,
▪ if 𝑔 has no -ve weight cycles reachable from 𝑠, this algorithm

finds the true minimum weight from 𝑠 to every other vertex
▪ otherwise, it throws an exception

page 22

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21: What’s the issue with negative edge weights?
	Slide 22
	Slide 23
	Slide 24
	Slide 25

