SECTION 5.1

Depth-first search

Ariadne’s thread ... but why not just teleport?

- & W 0 N o O b~ W N =

—_

Analysis of running time
for recursive dfs

visit all vertices reachable from s

def dfs_recurse(g, s):
for v in g.vertices:
v.visited = False
visit(s)

def visit(v):
v.visited = True
for w in v.neighbours:
if not w.visited:
visit(w)

page 6

—_

cO N o 0o A W DN

10
11
12
13

Analysis of running time
for stack-based dfs

visit all vertices reachable from s

def dfs(g, s):
for v in g.vertices:
v.seen = False
toexplore = Stack([s])
s.seen = True

while not toexplore.is_empty():
v = toexplore.popright()
for w in v.neighbours:
if not w.seen:
toexplore.pushright(w)
w.seen = True

page 7

SECTION 5.2

Breadth-first search /
finding shortest path

: 9
distance from A =0 Page

distance fromA =1

distance from A =2

Visit all the vertices in g reachable from start vertex s //411::j:;:>§/4§:::::\\§
def bfs(g, s):

for v in g.vertices:

QYEelelicle

toexplore = Queue([s]) —

s.seen = M;QEP Aise 1 Ar $€ 2

while not toexplore.is_empty():
v = toexplore.popleft()
for w in v.neighbours:
w.seen:
toexplore.pushright(w)

W.Sseen =

Breadth First Search

The key idea for all of these algorithms is that we keep track of an expanding
ring called the frontier. On a grid, this process is sometimes called “flood fill”,
but the same technique works for non-grids. Start the animation to see how

the frontier expands:

‘ < | Start animation | > ‘

https://www.redblobgames.com/pathfinding/a-star/introduction.html#breadth-first-search

https://www.redblobgames.com/pathfinding/a-star/introduction.html#breadth-first-search

page 10

Find a path from s to t, if one exists
def bfs_path(g, s, t):
for v in g.vertices:
(v.seen, v.come_from) = (False, None) CA) @ @ @ @
=

while not toexplore.is_empty():
v = toexplore.popleft()
for w in v.neighbours:
if not w.seen:

toexplore.pushright(w)
(w.seen, w.come_from) = (True, v)
if t.come_from has not been set: e
there is no path from s to t
else:

reconstruct the path from s to t,
working backwards <::> <::>

Analysis of running time
for stack-based dfs

1

o N O U A~ W N

10
11
12
13

visit all vertices reachable from s
def dfs(g, s):

for v in g.vertices: C)(\/)
v.seen = False)’————_
to_explore = Stack([s])‘ C)(‘)

s.seen = True

while not to_explore.is_empty():'],_, oA wost

v = toexplore.popright()

for w in v.neighbours:
if not w.seen: _X_,—
toexplore.pushright(w)

w.seen = True

| page 10

Analysis of running time for bfs

Visit all the vertices in g reachable from start vertex s
def bfs(g, s):
for v in g.vertices:
v.seen = False
toexplore = Queue([s])
s.seen = True

while not toexplore.is_empty():
v = toexplore.popleft()
for w in v.neighbours:
if not w.seen:
toexplore.pushright(w)
w.seen = True

one per verten, (o OCV>

run f@/ wevy {6&32' oVt J}'k}df::j

verrex we Visif, <o OCE)

Eated O(\/"’E)

E{S Department of Computer Scienc. X +

< C @ cl.cam.ac.uk/teaching/2223/Algorithm2/materials.html

Schedule

This is the planned lecture schedule. It will be updated as and when
actual lectures deviate from schedule. Links are to prerecorded
videos. Slides will be uploaded the night before a lecture, and re-
uploaded after the lecture with annotations made during the lecture.

5. Graphs and path finding
Lecture 13 5, 5.1 Graphs ¥ (14:27) code — graphs
5.2 Depth-first search & (11:37)

Optional tick £bfs-all from ex4.q6

Lecture 14 5.4 Dikstra's alt esisass :25) plus proof & (24:01)

Lecture 15 5.5 Algorithms and proofs & (9:29)
5.6 Bellman-Ford & (12:13)

Optional challenge: chatgpt-bfs
Optional tick: bf-cycle from ex4.q19

Lecture 16 5.7 Dynamic programming % (13:06)
5.8 Johnson's algorithm & (13:43)

Example sheet 4 [pdf]

6. Graphs and subgraphs

Example sheet 4

& Algorithms tick bfs-all X + v B = ~

< C @& clcam.acuk/teaching/2223/Algorithm2/ticks/bfs-all.html Q Y %w 0 O 40O W » 0O ‘
Question 6. Modify b Fse
website, for you to cheg Algorlth ms tick: bfs-all

Find All Shortest Paths

Breadth-first search can be used to find a shortest path between a pair of vertices.
Modify the standard bfs_path algorithm so that it returns all shortest paths.

Please submit a source file bfs_all.py on Moodle. It should implement a function

shortest paths(g, s, t)

4

The graph g is stored as an adjacency dictionary, forexample g = {0:{1,2}, 1:{},
2:{1,0}}.Ithas a key for every vertex, and the corresponding value is the set of that
vertex’s neighbours.

SECTION 5.3

Dijkstra’s algorithm

In a graph where the edges have costs (e.g.
travel time), we can find shortest paths by
using a similar “grow the frontier” algorithm
to bfs.

page 13 def dijkstra(g, s):
for v in g.vertices:
v.distance = o
s.distance = 0
toexplore = PriorityQueue([s], sortkey = Av: v.distance)

while not toexplore.is_empty():
v = toexplore.popmin()

for (w,edgecost) in v.neighbours:
dist_w = v.distance + edgecost
if dist_w < w.distance:
w.distance = dist_w
if w in toexplore:
toexplore.decreasekey(w)
else:
toexplore.push(w)

popped toexplore

U

|

|
{s, b} [c,a,d]
{s,b,c} |

page 13 def dijkstra(g, s):
for v in g.vertices:
v.distance = o
s.distance = 0
toexplore = PriorityQueue([s], sortkey = Av: v.distance)

while not toexplore.is_empty():
v = toexplore.popmin()

for (w,edgecost) in v.neighbours:
dist_w = v.distance + edgecost
if dist_w < w.distance:
w.distance = dist_w
if w in toexplore:
toexplore.decreasekey(w)
else:
toexplore.push(w)

T = OO+ OO e+) < Gt
O("U"\ Oéﬁ wheae n= #;/‘CMS f’m°(
n & \V4 6y [|O

9(E~+ Viy\V)

"

/IQ:SH from the bza'-nninj, ond all ‘}hruu‘jh the
course, we siress Yhaol the program mec's Yask s
not ‘wust lo write down o program, but that his
main task 1s 4031'~;= G {?::rmai Fmaf Yhal the
program he ?mPoses meets the ?qun“r.i ﬁprm:x‘
?um:}ic:nn‘l 5\}beci€cahun.

Programming is one of the most difficult branches
of applied mathematics; the poorer
mathematicians had better remain pure
mathematicians.

Edsger Dijkstra (1930—2002)
On the cruelty of really teaching computer science, 1988

Problem statement
Given a directed graph in which each edge is labelled with a cost = 0, and a
start vertex s, compute the distance from s to every other vertex, where ...

cost(u — v) is the cost associated with edge u — v

cost(u — --- = v) is the sum of edge costs along the pathu — --- > v

min cost of any path u — -+ = v, if one exists

distance(utov) =<0, ifu=mwv
o0 otherwise

)

The “breakpoint”
proof strategy

1. Decide on a property we
want to be true at all times

2. Assume it’s true up to time
T—1

3. Show that it must therefore
be true at time T

Assertion line 10.

A vertex v, once popped, is never put back into
the priority queue

Proof.

1. Avertex w is only pushed into the priority queue
when we discover a path shorter than w.distance

Once v is popped, v.distance = distance(s to v),
so there can be no shorter path

Hence v is never pushed back.

v = toexplore.popmin()

for (w,edgecost) in v.neighbours:
dist_w = v.distance + edgecost
if dist_w < w.distance:
w.distance = dist_w
if w in toexplore:
toexplore.decreasekey(w)
else:
toexplore.push(w)

i. The algorithm terminates

ii. Whenitdoes, for every vertex v, v.distance = distance(s to v)

iii. The two assertions never fail \/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7: https://www.redblobgames.com/pathfinding/a-star/introduction.html#breadth-first-search
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15: Edsger Dijkstra (1930—2002) On the cruelty of really teaching computer science, 1988
	Slide 16
	Slide 17
	Slide 18
	Slide 19

