
SECTION 5.1

Depth-first search

Ariadne’s thread ... but why not just teleport?

1 # visit all vertices reachable from s

2 def dfs_recurse(g, s):
3 for v in g.vertices:
4 v.visited = False
5 visit(s)
6

7 def visit(v):
8 v.visited = True
9 for w in v.neighbours:

10 if not w.visited:
11 visit(w)

Analysis of running time
for recursive dfs

page 6

1 # visit all vertices reachable from s

2 def dfs(g, s):
3 for v in g.vertices:
4 v.seen = False
5 toexplore = Stack([s])
6 s.seen = True
7

8 while not toexplore.is_empty():
9 v = toexplore.popright()

10 for w in v.neighbours:
11 if not w.seen:
12 toexplore.pushright(w)
13 w.seen = True

Analysis of running time
for stack-based dfs

page 7

SECTION 5.2

Breadth-first search /
finding shortest path

A

B

C

D

E

distance from A = 0

distance from A = 1

distance from A = 2

A

B

C

D

E

page 9

1 # Visit all the vertices in g reachable from start vertex s
2 def bfs(g, s):
3 for v in g.vertices:
4 v.seen = False
5 toexplore = Queue([s])
6 s.seen = True
7

8 while not toexplore.is_empty():
9 v = toexplore.popleft()

10 for w in v.neighbours:
11 if not w.seen:
12 toexplore.pushright(w)
13 w.seen = True

https://www.redblobgames.com/pathfinding/a-star/introduction.html#breadth-first-search

https://www.redblobgames.com/pathfinding/a-star/introduction.html#breadth-first-search

A

B D

CE

1 # Find a path from s to t, if one exists
2 def bfs_path(g, s, t):
3 for v in g.vertices:
4 (v.seen, v.come_from) = (False, None)

...

10 while not toexplore.is_empty():
11 v = toexplore.popleft()
12 for w in v.neighbours:
13 if not w.seen:
14 toexplore.pushright(w)
15 (w.seen, w.come_from) = (True, v)
...

19 if t.come_from has not been set:
20 there is no path from s to t
21 else:
22 reconstruct the path from s to t,
23 working backwards

page 10

1 # visit all vertices reachable from s

2 def dfs(g, s):
3 for v in g.vertices:
4 v.seen = False
5 to_explore = Stack([s])
6 s.seen = True
7

8 while not to_explore.is_empty():
9 v = toexplore.popright()

10 for w in v.neighbours:
11 if not w.seen:
12 toexplore.pushright(w)
13 w.seen = True

Analysis of running time
for stack-based dfs

1 # Visit all the vertices in g reachable from start vertex s
2 def bfs(g, s):
3 for v in g.vertices:
4 v.seen = False
5 toexplore = Queue([s])
6 s.seen = True
7

8 while not toexplore.is_empty():
9 v = toexplore.popleft()

10 for w in v.neighbours:
11 if not w.seen:
12 toexplore.pushright(w)
13 w.seen = True

Analysis of running time for bfs

page 10

SECTION 5.3

Dijkstra’s algorithm

In a graph where the edges have costs (e.g.
travel time), we can find shortest paths by
using a similar “grow the frontier” algorithm
to bfs.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

def dijkstra(g, s):
for v in g.vertices:

v.distance = ∞
s.distance = 0
toexplore = PriorityQueue([s], sortkey = 𝜆v: v.distance)

while not toexplore.is_empty():
v = toexplore.popmin()
Assert: v.distance is distance(s to v)
Assert: v is never put back into toexplore
for (w,edgecost) in v.neighbours:

dist_w = v.distance + edgecost
if dist_w < w.distance:

w.distance = dist_w
if w in toexplore:

toexplore.decreasekey(w)
else:

toexplore.push(w)

s

a

b

c

d

3
8

7

1

e

2

2

popped toexplore

{} [𝑠]

{𝑠} [𝑏, 𝑎, 𝑑]

{𝑠, 𝑏} [𝑐, 𝑎, 𝑑]

{𝑠, 𝑏, 𝑐} [𝑑, 𝑎]

page 13

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

def dijkstra(g, s):
for v in g.vertices:

v.distance = ∞
s.distance = 0
toexplore = PriorityQueue([s], sortkey = 𝜆v: v.distance)

while not toexplore.is_empty():
v = toexplore.popmin()
Assert: v.distance is distance(s to v)
Assert: v is never put back into toexplore
for (w,edgecost) in v.neighbours:

dist_w = v.distance + edgecost
if dist_w < w.distance:

w.distance = dist_w
if w in toexplore:

toexplore.decreasekey(w)
else:

toexplore.push(w)

page 13

Edsger Dijkstra (1930—2002)
On the cruelty of really teaching computer science, 1988

Programming is one of the most difficult branches
of applied mathematics; the poorer
mathematicians had better remain pure
mathematicians.

cost(𝑢 → 𝑣) is the cost associated with edge 𝑢 → 𝑣

cost 𝑢 → ⋯ → 𝑣 is the sum of edge costs along the path 𝑢 → ⋯ → 𝑣

distance 𝑢 to 𝑣 = ቐ
min cost of any path 𝑢 → ⋯ → 𝑣, if one exists
0, if 𝑢 = 𝑣
∞, otherwise

Problem statement
Given a directed graph in which each edge is labelled with a cost ≥ 0, and a
start vertex 𝑠, compute the distance from 𝑠 to every other vertex, where …

The “breakpoint”
proof strategy

1. Decide on a property we
want to be true at all times

2. Assume it’s true up to time
𝑇 − 1

3. Show that it must therefore
be true at time 𝑇

Assertion line 10.
A vertex 𝑣, once popped, is never put back into
the priority queue

Proof.

1. A vertex 𝑤 is only pushed into the priority queue
when we discover a path shorter than 𝑤.distance

2. Once 𝑣 is popped, 𝑣.distance = distance(𝑠 to 𝑣),
so there can be no shorter path

Hence 𝑣 is never pushed back.

8 v = toexplore.popmin()
9 # Assert: v.distance is distance(s to v)

10 # Assert: v is never put back into toexplore
11 for (w,edgecost) in v.neighbours:
12 dist_w = v.distance + edgecost
13 if dist_w < w.distance:
14 w.distance = dist_w
15 if w in toexplore:
16 toexplore.decreasekey(w)
17 else:
18 toexplore.push(w)

Theorem.

i. The algorithm terminates

ii. When it does, for every vertex 𝑣, 𝑣.distance = distance(𝑠 to 𝑣)

iii. The two assertions never fail

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7: https://www.redblobgames.com/pathfinding/a-star/introduction.html#breadth-first-search
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15: Edsger Dijkstra (1930—2002) On the cruelty of really teaching computer science, 1988
	Slide 16
	Slide 17
	Slide 18
	Slide 19

