directed graphs

$E \subseteq V \times V$
undirected graphs

$E \subseteq$ subsets of V of size 2

Konigsberga

"Can I go for a stroll around the city on a route that crosses each bridge exactly once?"

"Can I go for a stroll around the city on a route that crosses each bridge exactly once?"

"Is there a path in which every edge appears exactly once?"

$$
\begin{aligned}
g=\{A: & {[B, B, D], } \\
B: & {[A, A, C, C, D], } \\
& C:[B, B, D], \\
& D:[A, B, C]\}
\end{aligned}
$$

PATH-FINDING ALGORITHMS

How should this game agent navigate to the jetty?

1. Draw polygon boundaries around obstacles
2. Divide free space into convex polygons
3. Create a graph, with edges between adjacent polygons
4. Find a path on the graph
5. Draw this path in 2D coordinates on the map (easy, since we've used convex polygons)

Dwarf Fortress

Q: I've seen other games similar to Dwarf Fortress die on their pathfinding algorithms. What do you use and how do you keep it efficient?

A: Yeah, the base algorithm is only part of it. We use A*, which is fast of course, but it's not good enough by itself.

Generally, people have used approaches that add various larger structures on top of the map to cut corners. But we can't take advantage of these innovations since our map changes so much.

Interview with Tarn Adams (developer) by Ryan Donovan from the StackOverflow blog, Dec 2021

Alice was at the Golden Gate Bridge with Bob

Q. Why did Facebook choose to make CHECKIN a vertex, rather than a USER \rightarrow LOCATION edge?

Alice was at the Golden Gate Bridge with Bob
Cathy: Wish we were there! \quad David likes this

Q. What algorithmic questions we might ask about this graph?

What this course is about

- Clever algorithms
- Performance analysis
- What we can model with graphs
- Proving correctness

Right from the beginning, and all through the course, we stress that the programmer's task is not inst to write down a program, but that his main task is to give a formal proof that the program he proposes meets the equally formal functional specification.

Edsger Dijkstra (1930—2002)
On the cruelty of really teaching computer science, 1988

Graph notation

A graph consists of a set of vertices V, and a set of edges E.
directed graphs

$v_{1} \rightarrow v_{2}$ is how we write the edge from v_{1} to v_{2}
undirected graphs

$v_{1} \leftrightarrow v_{2}$ is how we write the edge between v_{1} and v_{2}

Which of these two graphs is a tree, which a forest?

- A directed acyclic graph (DAG) is a directed graph without any cycles
- A forest is an undirected acyclic graph
- A tree is a connected forest
- (An undirected graph is connected if for every pair of vertices there is an edge between them)

What's wrong with my definitions for path and cycle?

- A directed acyclic graph (DAG) is a directed graph without any cycles
- A forest is an undirected acyclic graph
- A tree is a connected forest
- (An undirected graph is connected if for every pair of vertices there is an edge between them)

Array of adjacency lists

$$
\begin{array}{ll}
\{1:[2,5], & \text { Storage: } \\
2:[1,5,4,3], & \\
3:[2,4], & O(|v|+|E|)
\end{array}
$$

$$
4:[3,2,5]
$$

$$
5:[1,2,4]
$$

Adjacency matrix

$$
\begin{array}{r}
\text { np. } \operatorname{array}([[0,1,0,0,1], \\
{[1,0,1,1,1],} \\
{[0,1,0,1,0],} \\
{[0,1,1,0,1],}
\end{array}
$$

Storage:

$$
o\left(|v|^{2}\right)
$$

Mini-exercise

- What is the largest possible number of edges in an undirected graph with V vertices?
- and in a directed graph?
- What's the smallest possible number of edges in a tree with V vertices?

Department of Computer Science and Technology

Courses 2022-23

Part IA CST

Algorithms 2
Preparation for Computer
Science

Databases
Digital Electronics
Discrete Mathematics

Foundations of Computer
Science

Hardware Practical Classes

Introduction to Graphics

OCaml Practical Classes

Object-Oriented Programming

Algorithms 2
Syllabus

This course is a continuation of Algorithms 1 (which is why these notes start at Section 5, and why the lectures start at Lecture 13).

Lecture notes

- Full notes as printed
- If you spot a mistake in the printed notes, let me know. Corrections will appear here.

Announcements, Q\&A, tick submission - Moodle
Schedule
This is the planned lecture schedule. It will be updated as and when actual lectures deviate from schedule. Links are to prerecorded videos. Slides will be uploaded the night before a lecture, and re-uploaded after the lecture with annotations made during the lecture.
5. Graphs and path finding

Lecture 13 5, 5.1 Graphs $\mathrm{L}^{\text {¹ }}(14: 27)$ code - graphs
5.2 Depth-first search \mathbb{T} ($11: 37$)
5.3 Breadth-first search $\mathbb{U}^{\top}(6: 43)$

Optional tick: bfs-all from ex4.q6
Lecture 14 5.4 Dikstra's algorithm \complement^{\top} ($15: 25$) plus proof $\mathbb{C}^{\top}(24: 01)$
Lecture 15 5.5 Algorithms and proofs [$\mathrm{E}^{\top}(9: 29)$
5.6 Bellman-Ford $\mathbb{L}^{7}(12: 13)$

Optional challenge: chatgpt-bfs
Optional tick: bf-cycle from ex4.q19
lecture notes
example sheets
slides
ticks
recordings

How to learn effectively

PASSIVE LEARNING

ACTIVE LEARNING

REFLECTIVE LEARNING

- copy out the lecturer's hand-writing
- annotate printed code snippets and examples (using page numbers)
- mini-exercises and example sheets
- optional ticks
- skeptical reading
- read notes, watch videos

Pre-recorded videos

Consent to recordings of live lectures

https://www.educationalpolicy.admin.cam.ac.uk/ supporting-students/policy-recordings/ recordings-student-information-sheet

For any teaching session where your contribution is mandatory or expected, we must seek your consent to be recorded.

You are not obliged to give this consent, and you have the right to withdraw your consent after it has been given.

SECTION 5.2
 Depth-first search


```
def visit_tree(v, v_parent):
    print("visiting", v, "from", v_parent)
    for w in v.neighbours:
        if w != v_parent:
            visit_tree(w, v)
visit_tree(D, None)
visiting D from None
visiting C from D
visiting A from C
visiting D from A
RecursionError:
maximum recursion depth exceeded
```


$d f s _r e c u r s e(g, D):$
visit(D):
neighbours $=[H, C, A]$
visit(H):
neighbours $=[D]$
don't visit D
return from visit(H)
visit(C)
neighbours $=[D, A]$
don't visit D
def visit(v):
v.visited = True
for w in v.neighbours:
visit(A):
\# visit all vertices reachable from s
def dfs_recurse(g, s):
for v in g.vertices:
v.visited = False
visit(s)
if not w.visited:
visit(w)

Ariadne's thread ...

but why not just teleport?


```
# visit all vertices reachable from s
```


visit all vertices reachable from s

def dfs(g, s):
def dfs(g, s):
for v in g.vertices:
for v in g.vertices:
v.seen = False
v.seen = False
toexplore = Stack([s])
toexplore = Stack([s])
s.seen = True
s.seen = True
while not toexplore.is_empty():
v = toexplore.popright()
for w in v.neighbours:
if not w.seen:
toexplore.pushright(w)
w.seen = True

```

\section*{Analysis of running time}

\section*{for stack-based dis}
```


visit all vertices reachable from s

def dfs(g, s):
for v in g.vertices:) O(V)
loexplore = Stack([s])]-O(1)

```
    while not toexplore.is_empty (): ] at most once per vertex, so \(O(v)\)
        v = toexplore.popright()
        for \(w\) in v. neighbours:
            if not w. seen:
\(\left.\begin{array}{l}\text { toexplore.pushright (w) } \\ \text { w. seen }=\text { True }\end{array} \quad \begin{array}{l}\text { run for every edge wt of every } \\ \text { vertex we visit, so }\end{array}\right\}\) OPE)
                total \(O(V+E)\)

\section*{Analysis of running time for recursive dis}
```


visit all vertices reachable from s

def dfs_recurse(g, s):
for v in g.vertices:
visit(s)
def visit(v):
for w in v.neighbours:7
if not w.visited:

```
    Coral: \(O(V+E)\)

SECTION 5.2
Breadth-first search /
finding shortest path

```


Visit all the vertices in g reachable from start vertex s

def bfs(g, s):
for v in g.vertices:
v.seen = False
toexplore = Queue([s])
s.seen = True
while not toexplore.is_empty():
v = toexplore.popleft()
for w in v.neighbours:
if not w.seen:
toexplore.pushright(w)
w.seen = True

```
```


Find a path from s to t, if one exists

def bfs_path(g, s, t):
for v in g.vertices:
(v.seen, v.come_from) = (False, None)
while not toexplore.is_empty():
v = toexplore.popleft()
for w in v.neighbours:
if not w.seen:
toexplore.pushright(w)
(w.seen, w.come_from) = (True, v)
if t.come_from has not been set:
there is no path from s to t
else:
reconstruct the path from s to t,
working backwards

```


\section*{Analysis of running time for bf}

\section*{Analysis of running time} for stack-based dfs
```


visit all vertices reachable from s

def dfs(g, s):
for v in g.vertices:
v.seen = False
to_explore = Stack([s])]_O(1)
to_explore = Stack([s])] O(1)

```

        while not to_explore.is_empty(): ] at most once per vertex, so \(O(v)\)
            v = toexplore. popright()
            for \(w\) in v. neighbours:
                    if not w. seen:
                toexplore. pushright(w)
                w. seen = True
                run for every edge cwt of every
verrex we visit, so \(O(E)\)
\(\square\) run for every edge so OPE)
```

```
# Visit all the vertices in g reachable from start vertex s
```

```
# Visit all the vertices in g reachable from start vertex s
def bfs(g, s):
def bfs(g, s):
        for v in g.vertices:
        for v in g.vertices:
            v.seen = False
            v.seen = False
        toexplore = Queue([s])
        toexplore = Queue([s])
        s.seen = True
        s.seen = True
                O(V+E)
                O(V+E)
        while not toexplore.is_empty():
        while not toexplore.is_empty():
                                    same as
                                    same as
            v = toexplore.popleft()
            v = toexplore.popleft()
            for w in v.neighbours:
            for w in v.neighbours:
                for dfs
                for dfs
                if not w.seen:
                if not w.seen:
                toexplore.pushright(w)
                toexplore.pushright(w)
                w.seen = True
```

```
                w.seen = True
```

```
```

Department of Computer Science }\times\quad

```

\section*{Schedule}
```

\leftarrow \mp@code { C ~ c l . c a m . a c . u k / t e a c h i n g / 2 2 2 3 / A l g o r i t h m 2 / m a t e r i a l s . h t m l }
C
ᄆ (%

```

This is the planned lecture schedule. It will be updated as and when actual lectures deviate from schedule. Links are to prerecorded videos. Slides will be uploaded the night before a lecture, and reuploaded after the lecture with annotations made during the lecture.

\section*{5. Graphs and path finding}

Lecture 13 5, 5.1 Graphs \({ }^{[7}(14: 27)\) code - graphs
5.2 Depth-first search \({ }^{[\pi}(11: 37)\)
5.3 Breadth-fi st search [ \((0.13)\)

Optional tick: bfs-all from ex4.q6
Lecture 14 5.4 Dikstra's algorithmi \((15: 25)\) plus proof \(\square^{\top}(24: 01)\)
Lecture 15 5.5 Algorithms and proofs \({ }^{[J}\) (9:29)
5.6 Bellman-Ford \({ }^{[7}\) (12:13)

Optional challenge: chatgpt-bfs
Optional tick: bf-cycle from ex4.q19
Lecture 16 5.7 Dynamic programming \(巳^{3}(13: 06)\)
5.8 Johnson's algorithm \({ }^{[\pi}(13: 43)\)

Example sheet 4 [pdf]

\section*{6. Graphs and subgraphs}
\[
\text { Lecture } 17 \text { 6.1 Flow networks } \mathbb{L}^{\top}(9: 31) \text { code }- \text { subgraphs }
\]

\section*{Example sheet 4}
\[
\leftarrow
\]

Question 6. Modify b website, for you to chec

\section*{Algorithms tick: bfs-all Find All Shortest Paths}

Breadth-first search can be used to find a shortest path between a pair of vertices. Modify the standard bfs_path algorithm so that it returns all shortest paths.

Please submit a source file bfs_all.py on Moodle. It should implement a function
```

shortest_paths(g, s, t)

Find all shortest paths from s to t

Return a list of paths, each path a list of vertices starting with s and

```

The graph g is stored as an adjacency dictionary, for example \(\mathrm{g}=\{0:\{1,2\}, 1:\{ \}\), \(2:\{1,0\}\}\). It has a key for every vertex, and the corresponding value is the set of that vertex's neighbours.

EXERCISE: Read the notes / watch the video for section 5.3, to familiarize yourself with Dijkstra's algorithm.

We will spend Monday's lecture going through the proof of correctness.

- not yet seen
- distance```

