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Why Natural Language Processing (NLP)?



Classification

What could the labels be?

● Positive/negative sentiment
● Topical
● Author name (authorship identification)
● Biased or not
● etc.

Given a piece of text, assign a label from a predefined set



Multiclass (1 of N): 

Formulation

Binary (1/-1, sometimes 0/1):

Given input instance x, parameters w, a classifier is a function f that predicts ŷ:

Multilabel (a set of labels,
possibly empty):



● Often these are denoted with the feature function: 

Features
Given a document, what features would you use to predict its:
● topic?
● sentiment?
● author name?
● factual correctness?

Some ideas:
● bag of words (n-grams)
● meta-data
● sub-word features
● external evidence, common sense...



Binary linear classifier

The “linear” part refers to the function f:

How do we learn the weights w?



Supervised learning

Given labeled training data of the form:

Image Credit:
Sebastian Raschka

Learn weights w that generalize well to new instances



The perceptron

Proposed by Rosenblatt in 1958, still close to state-of-the-art



The perceptron

AI hype is not a new 
problem

We should always 
remember when we 
talk to the public



The perceptron algorithm

error-driven, online learning



Given the following tweets labeled with sentiment and assuming bag of words:

● What weights do you expect your perceptron to learn?
● Do you think they would generalize well?

Testing our intuitions

negative Very sad about Iran.

negative No Sat off...Need to work 6 days a week.

negative I’m a sad panda today.

positive such a beautiful satisfying day of bargain shopping. loves it.

positive who else is in a happy mood??

positive actually quite happy today.



Sparsity and bias
In NLP, no matter how large our training dataset, we will never see (enough of) all 
the words/features.
● features unseen in training are ignored in testing
● there are ways to ameliorate this issue (e.g. word clusters, word vectors), but it 

never goes away
● there will be texts containing only unseen words

Bias: a feature that appears in each instance
● its value is hardcoded to 1
● often omitted from equations due to its omnipresence
● effectively learns to predict the majority class



Improving the perceptron

● Multiple passes

● Shuffling

● Averaging



Image credits: https://johnpatrickroach.com/2016/09/24/training-a-perceptron-model-in-python/ (left), 
https://en.wikipedia.org/wiki/Perceptron#/media/File:Perceptron_cant_choose.svg (right)

On separating hyperplanes

Even if linearly separable, no guarantee of finding a good separating hyperplane
If data not linearly separable, perceptron does not converge (will always update)

https://johnpatrickroach.com/2016/09/24/training-a-perceptron-model-in-python/
https://en.wikipedia.org/wiki/Perceptron#/media/File:Perceptron_cant_choose.svg


Binary to multiclass
Binary:

Multiclass 2:

Joint feature map: compatibility between x and y. More expressive but less intuitive.

Multiclass 1:

Input feature map: only describes x.



Multiclass perceptron (two versions)



Evaluation

What can go wrong?

Imbalanced datasets: predicting one class gives 90% accuracy

Very common: most topics are not relevant to most documents, etc.



Often combined into their harmonic mean, aka F1-score

Evaluation
Predicted/Correct MinorityClass MajorityClass

MinorityClass TruePositive FalsePositive

MajorityClass FalseNegative TrueNegative



So far we assumed a fixed 
decision threshold but often 
it makes sense to adjust it

Evaluation (cont.)

Image from https://machinelearningmastery.com/roc-curves-and-precision-recall-curves-for-imbalanced-classification/

Don’t pick a single threshold, 
check them all!

Can summarize in the area 
under the precision-recall 
curve (AUC)

https://machinelearningmastery.com/roc-curves-and-precision-recall-curves-for-imbalanced-classification/


Multilabel classification

Can be done in two ways:

- Binary relevance: build a binary classifier for each label in Y
- Ignores label dependencies

- Multiclass: build a multiclass classifier for all members of the powerset P(Y)
- Can be computationally expensive, training data can be sparse

Both are instances of reduction: transform complex problems to simpler ones

More advanced methods exist, but always try these two first

https://www.aclweb.org/anthology/D19-1665.pdf


What sentiment classifier would you build?

Type: Binary, multiclass, something else?

What features? What weights do you expect for them?
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