CLRS3 lemma 24.15 (used in Bellman-Ford). Consider a weighted directed

graph. Consider any shortest path from s to t,

 $s = v_0 \rightarrow v_1 \rightarrow \cdots \rightarrow v_k = t.$

Suppose we initialize the data structure by

 $v.dist = \infty$ for all vertices other than s

s.dist = 0

and then we perform a sequence of relaxation steps that includes, in order, relaxing $v_0 \rightarrow v_1$, then $v_1 \rightarrow v_2$, then ... then $v_{k-1} \rightarrow v_k$. After these relaxations, and at all times thereafter, v_k .dist = distance(s to v_k).

We'll prove by induction that, after the *i*th edge has been relaxed, v_i .dist = distance(s to v_i)

BASE CASE i = 0: Note that $s = v_0$. We initialized s. dist = 0, and distance (s to s) = 0, so the induction hypothesis is true. INDUCTION STEP: ... $f = rhe^{-s'}(s - a - group h - with - ve)$ we ight cycle, it's possible $that distance <math>(s - fo - s) = -\infty$. $s_0, is rhis proof right, wrong, or note even wrong?$

Max-Flow Min-Cut and Lagrangian optimization

A **cut** is a partition of the vertices into two sets, $V = S \cup \overline{S}$, with the source vertex $s \in S$ and the sink vertex $t \in \overline{S}$.

The **capacity** of the cut is

capacity(
$$S, \overline{S}$$
) = $\sum_{\substack{u \in S, v \in \overline{S}:\\u \to v}} c(u \to v)$

MAX-FLOW MIN-CUT THEOREM

For any flow f and any cut (S, \overline{S}) , value $(f) \leq \text{capacity}(S, \overline{S})$

Given a dataset of images, how can we train a neural network to be able to generate realistic fakes?

Flickr-Faces-HQ Dataset (FFHQ)
https://github.com/NVlabs/ffhq-dataset

Given a dataset of images, how can we train a neural network to be able to generate realistic fakes?

This problem turns out to have close links to the max-flow min-cut theorem: they're both about Lagrangian duality ...

A right-circular cylinder of radius r and height h has volume $\pi r^2 h$ and surface area $2\pi r^2 + 2\pi r h$. Given the surface area is A, find the largest possible volume.

 $\mathcal{L}(r,h;\lambda) = \pi r^2 h - \lambda (2\pi r^2 + 2\pi r h - A)$

- 1. Write out the Lagrangian \mathcal{L} , as above
- 2. For a given λ , find $r \ge 0$ and $h \ge 0$ to maximize $\mathcal{L}(r, h; \lambda)$
- 3. Choose λ so that these r and h satisfy the constraint

Step2:
$$\frac{\partial I}{\partial r} = 2\pi rh - \lambda (4\pi r + 2\pi h) = 0 \qquad \qquad h = 4 \lambda$$
$$\frac{\partial I}{\partial h} = \pi r^{2} - \lambda (2\pi r) = 0 \qquad \qquad f \neq 0 \qquad r = 2 \lambda$$
$$\frac{\partial I}{\partial h} = \pi r^{2} + 2\pi rh = A \Rightarrow 8\pi \lambda^{2} + 16\pi \lambda^{2} = A \Rightarrow \lambda = \sqrt{\frac{A}{24\pi}}$$
$$\text{Step3: } 2\pi r^{2} + 2\pi rh = A \Rightarrow 8\pi \lambda^{2} + 16\pi \lambda^{2} = A \Rightarrow \lambda = \sqrt{\frac{A}{24\pi}}$$
$$\text{Twy gives } V = \pi r^{2} h = 16\pi \lambda^{3} = 16\pi \left(\frac{A}{24\pi}\right)^{3/2}$$

Maths for NST B lecture 17

A right-circular cylinder of radius r and height h has volume $\pi r^2 h$ and surface area $2\pi r^2 + 2\pi rh$. Given the surface area is A, find the largest possible volume.

$$\mathcal{L}(r,h;\lambda) = \pi r^2 h - \lambda (2\pi r^2 + 2\pi r h - A)$$

For every λ , and for every (r, h) such that $\operatorname{area}(r, h) = A$,

Maths for NST B lecture 17

$$volume(r,h) = \pi r^{2}h$$

= $\pi r^{2}h - \lambda(\operatorname{area}(r,h) - A)$
= $\mathcal{L}(r,h;\lambda)$
 $\leq \max_{r',h'\geq 0} \mathcal{L}(r',h';\lambda)$
 $\coloneqq \operatorname{cap}(\lambda)$

Thus, for every λ ,

 $\max_{r,h: \operatorname{area}(r,h)=A} \operatorname{volume}(r,h) \leq \operatorname{cap}(\lambda)$

Thus,

 $\max_{r,h: \operatorname{area}(r,h)=A} \operatorname{volume}(r,h) \le \min_{\lambda} \operatorname{cap}(\lambda)$

This argument is called "weak Lagrangian duality"

Section 6.2

Given a weighted directed graph g with a source s and a sink t, find a flow from s to t with maximum possible value.

maximize
$$val(f) = \sum_{u:s \to u} f_{su} - \sum_{w:w \to s} f_{ws}$$

over $f \in IR^{E}$, $O = f_{uv} = C_{uv}$ for all edges $u \to v$

such that
$$\sum_{v:v \neq u} f_{vu} - \sum_{v:v \neq v} f_{wv} = 0$$
 for all $v \in V \setminus \{s, t\}$

The Lagrangian is

$$\mathcal{L}(f;\lambda) = \left(\sum_{u:s \to u} f_{su} - \sum_{w:w \to s} f_{ws}\right) - \sum_{v \neq s,t} \lambda_v \left(\sum_{u:v \to u} f_{vu} - \sum_{w:w \to v} f_{wv}\right)$$

Lagrangian weak duality says that for any flow f and for any λ ,

$$\operatorname{val}(f) \le \max_{f':0 \le f' \le C} \mathcal{L}(f';\lambda)$$

The Lagrangian is

$$\mathcal{L}(f;\lambda) = \left(\sum_{u:s \to u} f_{su} - \sum_{w:w \to s} f_{ws}\right) - \sum_{v \neq s,t} \lambda_v \left(\sum_{u:v \to u} f_{vu} - \sum_{w:w \to v} f_{wv}\right)$$

Lagrangian weak duality says that for any flow f and for any λ ,

$$\operatorname{Val}(f) \leq \max_{\substack{f':0 \leq f' \leq C}} \mathcal{L}(f';\lambda)$$

$$I(f';\lambda) = \sum_{v} \delta_{v} \left(\sum_{\substack{u:v \neq u \\ u:v \neq u}} f'_{vu} - \sum_{\substack{v:v \neq v \\ v:v \neq v}} f'_{vv} \right) \quad \text{where} \quad \delta_{v} = \begin{cases} 1 & \text{if } v \geq 5 \\ 0 & \text{if } v \geq 6 \end{cases}$$

$$= \sum_{v,u:v \neq u} \delta_{v} f'_{vu} - \sum_{v,v:w \neq v} \delta_{vv} f'_{vv}$$

$$= \sum_{a,b:a \neq b} \delta_{a} f'_{ab} - \sum_{v,v:w \neq v} \delta_{b} f'_{ab}$$

$$= \sum_{a,b:a \neq b} \int_{ab} f'_{ab} (f_{a} - \delta_{b})$$
Thus, is maximized at $f'_{ab} = \begin{cases} c_{ab} & \text{if } \delta_{a} \geq \delta_{b} \\ 0 & \text{if } \delta_{a} < \delta_{b} \\ ? & \text{if } \delta_{a} < \delta_{b} \end{cases} = \begin{cases} c_{ab} & \text{if } a < 5, b < 5 \\ 0 & \text{if } a < 5, b < 5 \\ ? & \text{if } \delta_{a} < \delta_{b} \end{cases}$
Weak duality holds for any λ . Lat's consider $\lambda_{v} \geq 1$ if ves for some out (5,5) o & f' < 5, b < 5 \\ for such a \lambda, \max I(f'_{i} \lambda) \geq \sum_{a \in 5, b < 5} \\ c_{ab} = c_{a} - c_{a}

The max-flow min-cut theorem is an application of Lagrangian weak duality