CLRS3 lemma 24.15 (used in Bellman-Ford). Consider a weighted directed

 graph. Consider any shortest path from s to t,$$
s=v_{0} \rightarrow v_{1} \rightarrow \cdots \rightarrow v_{k}=t
$$

Suppose we initialize the data structure by

$$
\begin{aligned}
& v . \text { dist }=\infty \text { for all vertices other than } s \\
& s . \text { dist }=0
\end{aligned}
$$

and then we perform a sequence of relaxation steps that includes, in order, relaxing $v_{0} \rightarrow v_{1}$, then $v_{1} \rightarrow v_{2}$, then \ldots then $v_{k-1} \rightarrow v_{k}$. After these relaxations, and at all times thereafter, v_{k}. dist $=\operatorname{distance}\left(s\right.$ to $\left.v_{k}\right)$.

We'll prove by induction that, after the i th edge has been relaxed,

$$
v_{i} \cdot \text { dist }=\operatorname{distance}\left(s \text { to } v_{i}\right)
$$

BASE CASE $-i=0$. Not g that $s=v_{0}$. We initialized s. dist $=0$, and d stance $(s$ to $s)=0$, so the induction hypothesis is true.

INDUCTION STEP:

$$
\begin{aligned}
& \text { If the res a cycle, ir's possible } \\
& \text { weight } \\
& \text { that distance (s to s) }=-\infty \text { ! }
\end{aligned}
$$

So, is this proof right, wrong, or not even wrong?

$$
\begin{aligned}
& \text { Max-Flow Min-Cut } \\
& \text { and } \\
& \text { Lagrangian optimization }
\end{aligned}
$$

Fig. 7 - Troffic pattern: entire network evailable

Lesene:

- - 1-ntmerimad bewndor
(8) Abliwy operation slolsise
-[定]- Capscity: it sach wiy per dey

 usins is spyosite direction

Origing: Olelsions $\mathrm{z}, 3 \mathrm{~W}, 3 \mathrm{C}, ~ 25,13 \mathrm{~N}, 135$.
12, s2tussin), ons hesmenio
pestingtions: Bivilions 3, 6,9 (Palyen);

Alternative Aestinatians: Gernany or Cost Germany

Nete IIX of Dlvisise 9, Pelest

Legene:

- - H treneliasel bewndory
(B) Abliwy operation slalales
-[交]- Capscity: it sach way per day Capocitg it soch wiy per doy,
hotwirts flaw of 9 per duy tevent
 sith espivalent number of returning treins in speosite diretties

Grigins: Divisions $\mathrm{E}, 3 \mathrm{~W}, 3 \mathrm{C}, \mathrm{Z5}, 33 \mathrm{~N}, 135$. 12 , S2 Jussin), ons hesmesio
pestingtions: Bivilions 3, 5, 9 (Palyan):

Alternatios destisatians bernany or tosi th by Germany

Nete if er blubeige 9, Feles
Fig. 7 - Troffic pattern: entire network available

A cut is a partition of the vertices into two sets, $V=S \cup \bar{S}$, with the source vertex $s \in S$ and the sink vertex $t \in \bar{S}$.

The capacity of the cut is

$$
\operatorname{capacity}(S, \bar{S})=\sum_{\substack{u \in S, v \in \bar{S}: \\ u \rightarrow v}} c(u \rightarrow v)
$$

MAX-FLOW MIN-CUT THEOREM

For any flow f and any cut (S, \bar{S}), value $(f) \leq \operatorname{capacity}(S, \bar{S})$

Given a dataset of images, how can we train a neural network to be able to generate realistic fakes?

Flickr-Faces-HQ Dataset (FFHQ)
https://github.com/NVlabs/ffhq-dataset

Given a dataset of images, how can we train a neural network to be able to generate realistic fakes?

This problem turns out to have close links to the max-flow min-cut theorem: they're both about Lagrangian duality ...

Maths for NST B lecture 17
A right-circular cylinder of radius r and height h has volume $\pi r^{2} h$ and surface area $2 \pi r^{2}+2 \pi r h$. Given the surface area is A, find the largest possible volume.

$$
\mathcal{L}(r, h ; \lambda)=\pi r^{2} h-\lambda\left(2 \pi r^{2}+2 \pi r h-A\right)
$$

1. Write out the Lagrangian \mathcal{L}, as above
2. For a given λ, find $r \geq 0$ and $h \geq 0$ to maximize $\mathcal{L}(r, h ; \lambda)$
3. Choose λ so that these r and h satisfy the constraint
step 2: $\left.\quad \begin{array}{l}\frac{\partial I}{\partial r}=2 \pi r h-\lambda(4 \pi r+2 \pi h)=0 \\ \frac{\partial I}{\partial h}=\pi r^{2}-\lambda(2 \pi r)=0\end{array}\right\} \Rightarrow$

$$
h=4 \lambda
$$

$$
r=0 \text { or } r=2 \lambda
$$

Step 3: $2 \pi r^{2}+2 \pi r h=A \Rightarrow 8 \pi \lambda^{2}+16 \pi \lambda^{2}=A \Rightarrow \lambda=\sqrt{\frac{A}{24 \pi}}$
Dis gives $V=\pi r^{2} h=16 \pi \lambda^{3}=16 \pi\left(\frac{A}{24 \pi}\right)^{3 / 2}$

Maths for NST B lecture 17

A right-circular cylinder of radius r and height h has volume $\pi r^{2} h$ and surface area $2 \pi r^{2}+2 \pi r h$. Given the surface area is A, find the largest possible volume.

$$
\mathcal{L}(r, h ; \lambda)=\pi r^{2} h-\lambda\left(2 \pi r^{2}+2 \pi r h-A\right)
$$

For every λ, and for every (r, h) such that $\operatorname{area}(r, h)=A$,

$$
\begin{aligned}
\operatorname{volume}(r, h) & =\pi r^{2} h \\
& =\pi r^{2} h-\lambda(\operatorname{drea}(\hat{1}, \hat{1})-A) \\
& =\mathcal{L}(r, h ; \lambda) \\
& \leq \max _{r^{\prime}, h^{\prime} \geq 0} \mathcal{L}\left(r^{\prime}, h^{\prime} ; \lambda\right) \\
& :=\operatorname{cap}(\lambda)
\end{aligned}
$$

Thus, for every λ,

$$
\max _{r, h: \operatorname{area}(r, h)=A} \operatorname{volume}(r, h) \leq \operatorname{cap}(\lambda)
$$

Thus,

$$
\max _{r, h: \operatorname{area}(r, h)=A} \operatorname{volume}(r, h) \leq \min _{\lambda} \operatorname{cap}(\lambda)
$$

This ar gument is called "weak
Lagrangian duality"

Section 6.2
Given a weighted directed graph g with a source s and a sink t, find a flow from s to t with maximum possible value.
maximize $\operatorname{val}(f)=\sum_{u: s \rightarrow u} f_{s u}-\sum_{w: w \rightarrow s} f_{w s}$
over $f \in \mathbb{R}^{E}, \quad 0 \leq f_{u v} \leq C_{u v}$ for all edges $u \rightarrow v$
such that $\quad \sum_{n: v \rightarrow u} f_{v u}-\sum_{w: w \rightarrow v} f_{w v}=0$ for all $v \in V \backslash\{s, t\}$
The Lagrangian is

$$
\mathcal{L}(f ; \lambda)=\left(\sum_{u: s \rightarrow u} f_{s u}-\sum_{w: w \rightarrow s} f_{w s}\right)-\sum_{v \neq s, t} \lambda_{v}\left(\sum_{u: v \rightarrow u} f_{v u}-\sum_{w: w \rightarrow v} f_{w v}\right)
$$

Lagrangian weak duality says that for any flow f and for any λ,

$$
\operatorname{val}(f) \leq \max _{f^{\prime}: 0 \leq f^{\prime} \leq C} \mathcal{L}\left(f^{\prime} ; \lambda\right)
$$

The Lagrangian is

$$
\mathcal{L}(f ; \lambda)=\left(\sum_{u: s \rightarrow u} f_{s u}-\sum_{w: w \rightarrow s} f_{w s}\right)-\sum_{v \neq s, t} \lambda_{v}\left(\sum_{u: v \rightarrow u} f_{v u}-\sum_{w: w \rightarrow v} f_{w v}\right)
$$

Lagrangian weak duality says that for any flow f and for any λ,

$$
\begin{aligned}
& \operatorname{val}(f) \leq \max _{f^{\prime}: 0 \leq f^{\prime} \leq C} \mathcal{L}\left(f^{\prime} ; \lambda\right) \\
& \mathcal{L}\left(f^{\prime} ; \lambda\right)=\sum_{v} \delta_{v}\left(\sum_{v: v \rightarrow 4} f_{v a}^{\prime}-\sum_{w: w \rightarrow v} f_{v v}^{\prime}\right) \text { where } \delta_{v}=\left\{\begin{array}{lll}
1 & \text { if } v=s \\
0 & \text { if } \\
\lambda_{v}=t \\
\text { oinewie }
\end{array}\right. \\
& =\sum_{v, u: v \rightarrow u} \delta_{v} f_{v u}^{\prime}-\sum_{v, w: w \rightarrow v} \delta_{w} f_{w v}^{\prime} \\
& =\sum_{a, b: a \rightarrow b} \delta_{a} f_{a b}^{\prime}-\sum_{b, a=a \rightarrow b} \delta_{b} f_{a b}^{\prime} \\
& =\sum_{a, b: a \rightarrow b} f_{a b}^{\prime}\left(\delta_{a}-\delta_{b}\right)
\end{aligned}
$$

This is maximized at $f_{a b}^{\prime}=\left\{\begin{array}{lll}c_{a b} & \text { if } & \delta_{a}>\delta_{b} \\ 0 & \text { it } & \delta_{a}<\delta_{b} \\ ? & \text { if } & \delta_{a}=\delta_{b}\end{array}=\left\{\begin{array}{lll}c_{a b} & \text { if } a \in S, b \in S \\ 0 & \text { if } a \in S, b \in S \\ ? & \text { if } a, b \text { on sam sit }\end{array}\right.\right.$
Weak duality holds for any λ. Let's consider $\lambda_{v}=1$ if $v \in S$ for some cut (s, ζ) 0 if v es
For such a $\lambda, \max _{o \in f^{\prime} \leqslant c} L\left(f^{\prime} ; \lambda\right)=\sum_{a \in s, b \notin s} c_{a b}$. capacity $(s, \bar{\zeta})$
The max-flow min-cut theorem is an application of Lagrangian weak duality

