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Edsger Dijkstra (1930—2002)

On the cruelty of really teaching computer
science, 1988




The “Selective Attention Test” is a famous experiment by Simons and
Chabris (1999). Around half of viewers don’t even notice the unexpected
event —someone in a gorilla suit — in the middle of this video.



Challenge 1: fast maximum?

We are given a collection of n items. Common
sense (and also CLRS section 9.1) says that to
find the maximum we need to make n — 1
comparisons. The challenge is to find the
maximum using only O (log n) comparisons
between items.

To make the problem concrete, let the items be
integers in the range {1, ..., M} for some
constant M. We’re only counting comparisons,
so treat any arithmetic operations as zero-cost.

Ben Stokes (Pembroke)
Tunan Shi (Sidney Sussex) X2
Kuba Bachurski (Trinity) X2
Siddhant Mukherjee (Selwyn)
Michael Lee (Wolfson)

Zhiyi Liu (Trinity)




Challenge 1: fast maximum?

We are given a collection of n items. Common
sense (and also CLRS section 9.1) says that to
find the maximum we need to make n — 1
comparisons. The challenge is to find the
maximum using only O (log n) comparisons
between items.

To make the problem concrete, let the items be
integers in the range {1, ..., M} for some
constant M. We’re only counting comparisons,
so treat any arithmetic operations as zero-cost.
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def max(x, M):
a = [0 for _ in range(M)]
for x; in x:
a[x;] =1
return the last index m such that a[m]=1



Challenge 1: fast maximum?

We are given a collection of n items. Common
sense (and also CLRS section 9.1) says that to
find the maximum we need to make n — 1
comparisons. The challenge is to find the
maximum using only O (logn) comparisons
between items.

To make the problem concrete, let the items be
integers in the range {1, ..., M} for some
constant M. We’re only counting comparisons,
so treat any arithmetic operations as zero-cost.
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Challenge 1 is silly, since
arithmetic and comparison can’t
be disentangled.

And any proof (such as in CLRS3
section 9.1) that doesn’t
acknowledge this is “not even
wrong”.



Right

Wrong

Not even wrong

Wolfgang Pauli (1900-1958)

“Das ist nicht nur nicht richtig;
es ist nicht einmal falsch”




another way to say “not even wrong”
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Exam question. Let dijkstra_path(g,s,t) be an implementation of

Dijkstra’s shortest path algorithm that returns the shortest path from
vertex s to vertex t in a graph g. Prove that the implementation can safely
terminate when it first encounters vertex t.

Dijsktra’s algorithm adds vertices to a min priority queue, sorted by their
distance from s. It repeatedly pops the minimum element in the priority

queue. T\ T Owly pakes sense f distanae’

Suppose that at the time we pop t, there is a shorter path to it than the
one we have just found. Consider such a path, and let x be the vertex just
before t along this path.

W@g path to tLJJ would have been popped before L(QD
the path s ~ x is shorter than the path we just found to t)Jo we would
have considered the path to t via x, and found this shorter path. A (
‘\,\ avejw 37( ctrue

contradiction. . ive rh we pop mat
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In othen wovds, 1¥'s using @ .u/f,wew Aafan

)

! (o""'PUf?JJ'EfQM@ .'

ygaing




CLRS3 lemma 24.15 (used in Bellman-Ford). Consider a weighted directed
graph. Consider any shortest path from s to t,
S=Vyg >V > >V, =t
Suppose we initialize the data structure by
v.dist = oo for all vertices other than s

s.dist=0
and then we perform a sequence of relaxation steps that includes, in order,
relaxing vy — v4, then v; = v,, then ... then v, _; — vy. After these
relaxations, and at all times thereafter, v;, . dist = distance(s to vy).

We'll prove by induction that, after the ith edge has been relaxed,
v;.dist = distance(s to v;)

BASE =

; that s = vy. We initialized s.dist = 0, and
stance(sto s) = 0,

the induction hypothesis is true.

A -V

II' rlu."’" AJT“f’A w'f.éé(
wu‘,N cyc(&, (r's POSS, |
O

fi\ou(: A{'J-GAV\U. (s fe S) =" *

INDUCTION STEP: ...



If you want more effective programmers, you
will discover that they should not waste their
time debugging, they should not introduce the
bugs to start with.

Edsger Dijkstra (1930—2002)

Beware of bugs in the above code; I
have only proved it correct, not
tried it.

Donald Knuth (1938—)



Coming up next week

= Algorithms for finding structures in graphs
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student i

Similarity matrix of Tick 1 code

student j

B high similarity
[ |
[ |

B low similarity

Similarity graph

high similarity

low similarity




Similarity matrix of Tick 1 code Similarity graph + embedded tree, using high-weight edges

student i

student j

= high similarity —
i

B low similarity

high similarity

low similarity



Similarity matrix of Tick 1 code Embedded tree, using high-weight edges

student i

student j

B high similarity
[ |
[ |

B low similarity



Similarity matrix of Tick 1 code
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B high similarity
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Algorithms2 Challenge 2: Finding Order

In this tick, your aim is to find a good order for a set of items, given similarity scores between them. You are
given a list of pairs of items and their similarity scores (this list doesn’t include all pairs). Here is an example:

e ticksim_train.csv

We saw anillustration in the video for section 6.6. We were given a list of students, and also the similarity
scores between their submitted code for Tick 1. We used Kruskal’s algorithm to find an ordering for the
students, such that two students with a high similarity score appeared close to each other in the order.

Your aim to produce a good ordering of items. To be precise, let s, € (0, 1) be the similarity score between
items u and v. Your score will be

.T,_

m 1
- where T =y Z

£
pairs (u,v)

score = 100 x — 2| log(1 — su).

Here z, is the index of item w in your ordering, M is the number of pairs, and [N is the number of items. The
normalization is so that the score is always < 100 (since < 0); and the constant m is the expected score
from a random ordering,

1
m= o7 Z log(1 — su),

pairs (u,v)
thus any sensible answer will give score > 0.

Hint. Could we improve on the Kruskal clustering method, by choosing which branch of the classification tree is
left and which is right? Could we use ideas from toposort? Could we somehow use max-flow to order vertices?




