
Edsger Dijkstra (1930—2002)
On the cruelty of really teaching computer 
science, 1988



The “Selective Attention Test” is a famous experiment by Simons and 
Chabris (1999). Around half of viewers don’t even notice the unexpected
event – someone in a gorilla suit – in the middle of this video.



Challenge 1: fast maximum?
We are given a collection of 𝑛 items. Common 
sense (and also CLRS section 9.1) says that to 
find the maximum we need to make 𝑛 − 1
comparisons. The challenge is to find the 
maximum using only 𝑂(log 𝑛) comparisons 
between items.

To make the problem concrete, let the items be 
integers in the range {1, … ,𝑀} for some 
constant 𝑀. We’re only counting comparisons, 
so treat any arithmetic operations as zero-cost.

Ben Stokes (Pembroke)
Tunan Shi (Sidney Sussex) ×2
Kuba Bachurski (Trinity) ×2
Siddhant Mukherjee (Selwyn)
Michael Lee (Wolfson)
Zhiyi Liu (Trinity)



def max(x, M):
a = [0 for _ in range(M)]
for xi in x:

a[xi] = 1
return the last index m such that a[m]=1

Challenge 1: fast maximum?
We are given a collection of 𝑛 items. Common 
sense (and also CLRS section 9.1) says that to 
find the maximum we need to make 𝑛 − 1
comparisons. The challenge is to find the 
maximum using only 𝑂(log 𝑛) comparisons 
between items.

To make the problem concrete, let the items be 
integers in the range {1, … ,𝑀} for some 
constant 𝑀. We’re only counting comparisons, 
so treat any arithmetic operations as zero-cost.



Challenge 1: fast maximum?
We are given a collection of 𝑛 items. Common 
sense (and also CLRS section 9.1) says that to 
find the maximum we need to make 𝑛 − 1
comparisons. The challenge is to find the 
maximum using only 𝑂(log 𝑛) comparisons 
between items.

To make the problem concrete, let the items be 
integers in the range {1, … ,𝑀} for some 
constant 𝑀. We’re only counting comparisons, 
so treat any arithmetic operations as zero-cost.



Challenge 1 is silly, since 
arithmetic and comparison can’t 
be disentangled.

And any proof (such as in CLRS3 
section 9.1) that doesn’t 
acknowledge this is “not even 
wrong”.



Right

Wrong

Not even wrong
Wolfgang Pauli (1900-1958)

“Das ist nicht nur nicht richtig; 
es ist nicht einmal falsch”



another way to say “not even wrong” …



Exam question. Let dijkstra_path(𝑔,𝑠,𝑡) be an implementation of 

Dijkstra’s shortest path algorithm that returns the shortest path from 

vertex 𝑠 to vertex 𝑡 in a graph 𝑔. Prove that the implementation can safely 

terminate when it first encounters vertex 𝑡.

Dijsktra’s algorithm adds vertices to a min priority queue, sorted by their 
distance from 𝑠. It repeatedly pops the minimum element in the priority 
queue.

Suppose that at the time we pop 𝑡, there is a shorter path to it than the 
one we have just found. Consider such a path, and let 𝑥 be the vertex just 
before 𝑡 along this path.

Since 𝑥 is on a shortest path to 𝑡, 𝑥 would have been popped before 𝑡 (as 
the path 𝑠 ↝ 𝑥 is shorter than the path we just found to 𝑡). So we would 
have considered the path to 𝑡 via 𝑥, and found this shorter path. A 
contradiction.



CLRS3 lemma 24.15 (used in Bellman-Ford). Consider a weighted directed 

graph. Consider any shortest path from 𝑠 to 𝑡,

𝑠 = 𝑣0 → 𝑣1 → ⋯ → 𝑣𝑘 = 𝑡.

Suppose we initialize the data structure by

𝑣.dist = ∞ for all vertices other than 𝑠

𝑠.dist = 0

and then we perform a sequence of relaxation steps that includes, in order, 

relaxing 𝑣0 → 𝑣1, then 𝑣1 → 𝑣2, then … then 𝑣𝑘−1 → 𝑣𝑘. After these 

relaxations, and at all times thereafter, 𝑣𝑘.dist = distance(𝑠 to 𝑣𝑘).

We’ll prove by induction that, after the 𝑖th edge has been relaxed, 
𝑣𝑖.dist = distance(𝑠 to 𝑣𝑖)

BASE CASE 𝑖 = 0: Note that 𝑠 = 𝑣0. We initialized 𝑠.dist = 0, and 
distance 𝑠 to 𝑠 = 0, so the induction hypothesis is true.

INDUCTION STEP: …



If you want more effective programmers, you 
will discover that they should not waste their 
time debugging, they should not introduce the 
bugs to start with.

Edsger Dijkstra (1930—2002)

Beware of bugs in the above code; I 
have only proved it correct, not 
tried it.

Donald Knuth (1938—)



▪ Algorithms for finding structures in graphs

Coming up next week



high similarity

low similarity

student 𝑖

student 𝑗

high similarity

low similarity

Similarity matrix of Tick 1 code Similarity graph



high similarity

low similarity

student 𝑖

student 𝑗

high similarity

low similarity

Similarity matrix of Tick 1 code Similarity graph + embedded tree, using high-weight edges



high similarity

low similarity

student 𝑖

student 𝑗

Similarity matrix of Tick 1 code Embedded tree, using high-weight edges



high similarity

low similarity

student 𝑖

student 𝑗

Similarity matrix of Tick 1 code




