
Geometry algorithms
Damon Wischik, Computer Laboratory, Cambridge University. Lent Term 2022

Contents

1 A∗ algorithm 1

2 Segment intersection 3

3 Jarvis’s march 5

4 Graham’s scan 8

5 Solutions to exercises 10

1

1. A∗ algorithm
Suppose we’re searching for the shortest path between two vertices, on a graph which is
embedded in space. In other words, suppose that every vertex has spatial coordinates—
meaning that we can measure spatial distances and directions between them. The spatial
distance won’t be the correct graph distance, since it ignores reachability.

spatial distance = 24 graph distance = 26
Image credit: Red Blob Games1

Nonetheless, can we use spatial knowledge to speed up path-finding? A simple greedy strategy
is to prioritize the search in the direction of our destination. We can use a priority queue just
as in Dijkstra’s algorithm, but prioritize vertices by their spatial distance to the destination,
in contrast to Dijkstra’s algorithm which prioritizes by graph distance from the origin and
thus searches blindly in all directions.

greedy search blind search

Greedy search does not work, in the following sense: if we stop the search as soon as we
reach the destination vertex, we might end up with a suboptimal path.

Here’s a simple example to illustrate. The solid lines are graph edges with weights,
and the dotted lines show spatial distance to the destination vertex t. The greedy algorithm,
starting from s, will first add a and b to the queue, pick b next because it’s nearer the
destination, add t to the queue, then pop t. So it will stop with the path s → b → t, when
we really want s → a → b → t.

s a b t
3 1

5
4

4
1

1There is an excellent tutorial about A∗ at Red Blob Games, http://www.redblobgames.com/pathfinding/
a-star/introduction.html

http://www.redblobgames.com/pathfinding/a-star/introduction.html
http://www.redblobgames.com/pathfinding/a-star/introduction.html

2

PROBLEM STATEMENT AND ALGORITHM

The setting is the same as for Dijkstra’s algorithm. Consider a directed graph with edge
costs ≥ 0, and suppose we’re given a start vertex s and a destination vertex t. We seek a
shortest path from s to t. ‘Shortest’ has its usual meaning — the cost of a path is the sum
of its edge weights, and we seek a path of minimum cost.

The A∗ algorithm requires that we have available an heuristic distance function h(v to t).
(This might for example be the straight-line distance from v to t.) It proceeds exactly like
Dijkstra’s algorithm, except that it uses a different key to sort the priority queue:We must use the

version of dijkstra as
given in lecture
ntoes, which allows
vertices to re-enter
toexplore after
they’ve been
popped. (Some
textbooks present a
different version of
Dijkstra’s algorithm,
which does not
allow re-entry.)

key(v) = v.distance + h(v to t)

where v.distance is its best guess so far for the distance from s to v. It terminates as soon
as it pops t.

Theorem (Correctness). Assume that the heuristic distance is always less than or equal to the
graph-theoretic distance, i.e. that

h(v to t) ≤ d(v to t) for all v

where d(v to t) is the cost of the shortest path from v to t. The A∗ algorithm terminates and,
when it does, t.distance = d(s to t).

Exercise 1◦. Use the A∗ algorithm, by hand, to find a path from s to t in the four-node graph
above.

Exercise 2*. Prove that when A∗ terminates it has found the correct distance to t. [Hint. It’s
an induction, but not the same type of induction as used in Dijsktra’s algorithm. Look at the
proof for case (i) of Bellman’s algorithm.]

3

2. Segment intersection
Do two line segments intersect? This is a simple question, and a good starting point for
many more interesting questions in computational geometry.

Let’s start with a simpler problem. Is the point q above or below the dotted line? The answer
doesn’t need anything more than basic school maths: if qy >

(
py/px

)
qx then it’s above.

(��, ��)

(�, �)

But it’s easy to get tangled up thinking through all the cases (e.g. if px > 0 and py < 0 do
I need to flip the sign?) We can use slightly cleverer maths, namely dot products, to get a
cleaner answer:

Let p⊺ = (−py, px). If we rotate the vector # »
0 p by 90° anticlockwise, we get # »

0 p⊺. Now, the
sign of p⊺ ·q, i.e. of −pyqx + pxqy, tells us which side of the dotted line q is on. The dotted
line is called the extension of # »0 p.

p⊺ · q > 0 : q is on the left, as you travel along the dotted line in direction # »
0 p

p⊺ · q = 0 : q is on the line itself
p⊺ · q < 0 : q is on the right

0

 = (! , ")

 # = (− " , !)

%

left side of 0

right side of 0

This gives us all the tests we need to decide if two line segments r s and t u intersect:

1. If t and u are both on the same side of the extension of # »r s, i.e. if (s− r)⊺ · (t− r) and
(s− r)⊺ · (u− r) have the same sign, then the two line segments don’t intersect.

2. Otherwise, if r and s are both on the same side of the extension of # »
t u, then the two

line segments don’t intersect.
3. Otherwise, they do intersect.

�

�

!

4

Well-written code should test all the boundary cases, e.g. when r = s or when t or u lie on
the extension of # »r s. It is however a venial sin to test equality of floating point numbers2,
because of the vagaries of finite-precision arithmetic, and so the question “How should my
segment-intersection code deal with boundary cases?” depends on “What do I know about
my dataset and what will my segment-intersection code be used for?”

Exercise 3. Two line segments are moving. The first line segment has endpoints
(−0.2 + 0.1t,−0.1 + 0.1t) and (0.8 + 0.1t,−0.4 + 0.2t), the second has endpoints
(−0.36 + 0.52t, 1.1− 0.3t) and (2.1− 0.3t, 0.1− 0.3t), and t ≥ 0. Do they collide? If so, at what
time t? Write the most concise pseudocode you can, to solve this problem for arbitrary
coefficients.

Exercise 4. Consider a horizontal line starting from q and going infinitely to the right. How
many times does it cross an edge? What about from r? Devise an algorithm to detect whether a
given point is outside a given shape (like q) or inside (like r), where the shape is specified as a
list of non-intersecting polygons and each polygon is specified as a list of points. Discuss the
handling of corner cases.

q

r

2In Python, 0.1 + 0.1 + 0.1− 0.3 gives 5.55× 10−17, which is not equal to 0

5

3. Jarvis’s march
Given a collection of points, a convex hull is what you get if you throw a lasso around all the
points, then pull it tight.

Convex hulls are used, among other things, for collision detection. Given a straight line
segment on the convex hull of a complex object, all points in that object must lie on the
same side of the line. If we can get away with checking the sides of just a few lines, we can
drastically speed up checks for collision.

MATHEMATICAL DEFINITION

We may as well define convex hull properly, even though for algorithmic discussion that
follows we’ll be working informally. Formally speaking, given a collection of points P =
{p1, . . . , pn}, any vector q is called a convex combination if it can be written as

q = α1p1 + · · ·+ αnpn where αi ≥ 0 for all i, and
n∑

i=1

αi = 1.

The convex hull of a collection of points is the set of all convex combinations.

�

�!

�"#

$

q = 0.6p1 + 0.16p2 + 0.24p3: is a convex combination
r = −0.5p1 + 0.9p2 + 0.6p3: not a convex combination

The corner points of the convex hull are the points p ∈ P such that p ̸∈ convexhull(P \ {p}).
(These are the points that catch when the lasso is pulled tight—but to turn the informal idea
of a lasso pulled tight into precise symbolic logic is rather hard!)

THE ALGORITHM

Here is an algorithm to compute the corner points of the convex hull of a collection of points
P . It is due to Jarvis (1973), and was discovered independently by Chand and Kapur (1970).

6

1 l e t q0 be the point with lowest y−coordinate
2 (in case of a tie , pick the one with the largest x−coordinate)
3
4 draw a horizontal (l e f t→r ight) l ine through q0
5 for a l l other points r ∈ P :
6 f ind the angle θ(r) from the horizontal l ine to # »q0 r , measured ⟲
7 l e t q1 be the point with the smallest angle
8 (in case of a tie , pick the one furthest from q0)
9
10 h = [q0 , q1]
11 repeatedly :
12 l e t p and q be the last two points added to h respectively
13 for a l l other points r ∈ P :
14 f ind the angle θ(r) from the extended # »p q l ine to # »q r , measured ⟲
15 pick the point with the smallest angle , and append i t to h
16 (in case of a tie , pick the one furthest from q)
17 stop when we return to q0

ANALYSIS

At each step of the iteration, we search for the point r ∈ P with the smallest angle θ(r), thus
the algorithm takes O(nH) where n is the number of points in P and H is the number of
points in the convex hull. (As with Ford-Fulkerson, running time depends on the content of
the data, not just the size.)

Performance note. The algorithm says “find the point r with the smallest angle θ(r)”. We
could use trigonometry to compute θ — but there is a trick to make this faster. (Faster in
the sense of ‘games get more frames per second’, but no difference in the big-O sense.) If all
the points we’re comparing are on the same side of dotted line, as they are at all steps of
Jarvis’s march, then

θ(r1) < θ(r2) ⇐⇒ r2 is on the left of the extended line # »q r1

and we’ve seen how to compute this true/false value with just some multiplications and
additions.

7

∗ ∗ ∗

Jarvis’s march is very much like selection sort: repeatedly find the next item that goes into
the next slot. In fact, most convex hull algorithms resemble some sorting algorithm.

Exercise 5◦. Jarvis’s march starts by picking a point q0 ∈ P with the lowest y-coordinate,
breaking ties by choosing the larger x-coordinate. Give an example to show that, without this
tie breaking rule, q0 might not be a corner point.

8

4. Graham’s scan
Here is another algorithm for computing the convex hull, due to Ronald Graham (1972). It
builds up the convex hull by scanning through all the points in a fan, backtracking when
necessary.

1 l e t r0 be the point with lowest y−coordinate
2 (in case of a tie , pick the one with the largest x−coordinate)
3
4 draw a horizontal (l e f t→r ight) l ine through r0
5 for a l l other points r :
6 f ind the angle from the horizontal l ine to # »r0 r , measured ⟲
7 l e t r1, . . . , rn−1 be the sorted l i s t of points , lowest angle to highest
8
9 h = [r0 , r1]
10 for each ri in the sorted l i s t of points , i ≥ 2 :
11 i f ri isn ’ t on the l e f t of the extension of the f ina l segment of h :
12 # backtrack
13 repeatedly delete points from the end of h unt i l ri i s
14 append ri to h

The diagram on the next page shows how the algorithm proceeds. Each row in the diagram
shows it working on a new ri, and the side-by-side panels show steps in backtracking.

ANALYSIS

The initial sort takes time O(n logn), where n is the number of points in the set. During the
scan, each point ri is added to the list once, and it can be removed at most once, so the loop
is O(n).

To save some trigonometrical calculations, the same trick as in Section 3 works.

Exercise 6. Graham’s algorithm scans points in order, according to a certain angle. Explain
carefully what happens when two points have exactly the same angle. Does the code still work?
[Hint. The code can crash! Make sure you identify all the cases where the code crashes or gives
an incorrect answer.]

9

10

5. Solutions to exercises
Exercise 1. It’s worth noting that the dotted line distances do indeed satisfy the requirement
for correctness: h(a to t) = 4 ≤ d(a to t) = 5, and h(b to t) = 1 ≤ d(b to t) = 4.
pop s, s.distance=0

relax a, b
toexplore = [a(distance=3,key=7), b(distance=5,key=6)]

pop b, b.distance=5
relax t
toexplore = [a(distance=3,key=7), t(distance=9,key=9)]

pop a, a.distance=3
relax b
toexplore = [b(distance=4,key=5), t(distance=9,key=9)]

pop b, b.distance=4
relax t
toexplore = [t(distance=8,key=8)]

pop t, t.distance=8

Exercise 2. This is a delicate proof. There is obviously some sort of induction involved...
but the Dijkstra-style argument (“prove by induction that when a vertex is popped it has the
correct distance”) doesn’t work, and the example from Exercise 1 demonstrates why. Instead,
the induction has to be along the vertices of the correct path, just like the proof of correctness
of Bellman’s algorithm.

At the instant t is first popped, suppose t.distance ̸= d(s to t). Consider a true shortest
path s to t. There are two cases for the status of the vertices on this path at the instant in
question: (A) all the vertices apart from t have been popped with the correct distance, (B)
there is a sequence of vertices s, . . . , u which have been popped with the correct distance, then
some vertex v that hasn’t (i.e. either v not yet popped, or popped with the wrong distance),
then zero or more extra vertices before t. We’ll analyse case (B). Case (A) is similar but
simpler.

In case (B), the path is
s → · · ·u︸ ︷︷ ︸

popped, correct dist.

→ v︸︷︷︸
not

→ · · · t

When u was popped with the correct distance, it relaxed u → v, hence at that time
key(v) = v.distance + h(v to t)

≤ u.distance + c(u → v) + h(v to t) since u → v just relaxed
= d(s to u) + c(u → v) + h(v to t) by choice of u
= d(s to v) + h(v to t) since u → v is on a shortest path to t

≤ d(s to v) + d(v to t) by assumption on h

= d(s to t) since v is on a shortest path
Some time after u was popped, t gets popped; and when t was popped it had the wrong
distance, hence

key(v) = t.distance > d(s to t) .

We just showed that, when u was popped earlier in the execution, key(v) ≤ d(s to t); and
since keys can only ever decrease it must be that v gets popped after u and before t. But
since u was popped with the correct distance (by construction), and u relaxes the edge u → v,
and that edge is part of a shortest path s ⇝ t, then v must have the correct distance. This
contradicts our choice of v, therefore case (B) is impossible.

A similar but simpler argument shows that case (A) is impossible. Thus, our premise
(that when t was first popped, t.distance is incorrect) must be false.

Exercise 3. First, define two utility classes: Point which is just a tuple with two fields

11

x and y, and Polynomial which supports evaluation, multiplication, and root-finding. Let
Polynomial(a0,a1,. . . ,an) denote the polynomial a0 + a1x+ · · ·+ anx

n.

1 # Transpose a point
2 def T(p): return Point(-p.y, p.x)
3
4 # Define the four coordinates.
5 p = Point(x=Polynomial(-0.2, 0.1), y=Polynomial(-0.1, 0.1))
6 q = Point(x=Polynomial(0.8, 0.1), y=Polynomial(-0.4, 0.2))
7 r = Point(x=Polynomial(-0.36, 0.52), y=Polynomial(1.1, -0.3))
8 s = Point(x=Polynomial(2.1, -0.3), y=Polynomial(0.1, -0.3))
9
10 # Because of the cunning Polynomial class, these are all Polynomials too:
11 rside = T(q-p)*(r-p)
12 sside = T(q-p)*(s-p)
13 pside = T(s-r)*(p-r)
14 qside = T(s-r)*(q-r)
15
16 # At a given instant in time t, do the two line segments intersect?
17 # This is a concise implementation of the method from lectures.
18 def intersect(t):
19 return ((rside(t)>0) != (sside(t)>0)) and ((pside(t)>0) != (qside(t)>0))
20
21 # Find all the instants in time at which one of the "side" tests switches value.
22 events = rside.roots() + sside.roots() + pside.roots() + qside.roots()
23 events = sorted(t for t in events if t>0)
24
25 # LEFT AS AN EXERCISE:
26 # dealing properly with (i) empty events list, (ii) time before first event,
27 # (iii) time after last event.
28
29 # For each interval (u,v), do the two lines intersect at time (u+v)/2?
30 # If they do then return u
31 collisions = [u for u,v in zip(events[:-1],events[1:]) if intersect((u+v)/2)]
32
33 collisions # answer: [2.352]

Here is the full-blown idiomatic Python code to implement Point and Polynomial.

1 import collections
2 import math
3
4 class Point(collections.namedtuple('Point', ['x','y'])):
5 def __sub__(self, other): return Point(x=self.x-other.x, y=self.y-other.y)
6 def __neg__(self): return Point(x=-self.x, y=-self.y)
7 def __str__(self): return 'Point({}, {})'.format(str(self.x), str(self.y))
8 def __mul__(self, other): return self.x*other.x + self.y*other.y
9 def __call__(self, x): return Point(x=self.x(x), y=self.y(x))
10
11 class Polynomial:
12 def __init__(self, a0=0, *ais):
13 self._coef = []
14 for ai in reversed(ais):
15 if ai==0.0 and len(self._coef)==0: continue
16 self._coef.insert(0, ai)
17 self._coef.insert(0, a0)
18 def __len__(self):
19 return len(self._coef)
20 def __getitem__(self, i):
21 return self._coef[i] if i<len(self._coef) else 0
22 def __neg__(self):
23 return Polynomial(*[-ai for ai in self._coef])
24 def __add__(self, other):
25 return Polynomial(*[self[i]+other[i] for i in range(max(len(self),len(other)))])
26 def __sub__(self, other):
27 return Polynomial(*[self[i]-other[i] for i in range(max(len(self),len(other)))])
28 def __mul__(self, other):
29 f,g = self,other

12

30 return Polynomial(*[sum(f[j]*g[i-j] for j in range(i+1))
31 for i in range(len(f)+len(g)-1)])
32 def __call__(self, x):
33 return sum(a*math.pow(x,i) for i,a in enumerate(self._coef))
34 def __str__(self):
35 terms = ["{a} {e}".format(a=a, e="" if i==0 else "x"+("" if i==1 else "^"+str(i)))
36 for i,a in enumerate(self._coef)]
37 return " + ".join(terms)
38 def roots(self):
39 if len(self) > 3:
40 raise Exception("No solution for cubics or higher")
41 p = self
42 if p[1] == 0 and p[2] == 0:
43 return []
44 elif p[2] == 0:
45 return [-p[0]/p[1]]
46 elif p[0] == 0:
47 return [0, -p[1]/p[2]]
48 elif p[1]**2 < 4*p[0]*p[2]:
49 return []
50 else:
51 x = math.sqrt(p[1]**2 - 4*p[0]*p[2])
52 return [(-p[1]+x)/(2.0*p[2]), (-p[1]-x)/(2.0*p[2])]

Exercise 4. Algorithm: count the total number of segments that cross the infinite horizontal
line. Odd ⇒ inside, even ⇒ outside.

q

p1

p2

To test if a segment p1p2 crosses a half-infinite horizontal line: we can actually just apply the
test from lecture notes without thinking, and plug in the coordinate (+∞, q.y) for the other
end of the horizontal line ‘segment’. This can be justified by considering (x, q.y) as x → ∞,
and asking what side it’s on as x → ∞. Alternatively, if we don’t like +∞ in code, here is
what the tests expand to. First, for simplicity, subtract q from each coordinate so that we’re
considering the half-infinite line from (0, 0). Then,

1 i f p1 . y and p2 . y have the same sign :
2 doesn ’ t cross
3 else i f p1 . y == p2 . y :
4 doesn ’ t cross
5 else i f p2 . y−p1 . y and − p1 . x(p2 . y−p1 . y) − p1 . y(p1 . x−p2 . x) have the same sign :
6 doesn ’ t cross
7 else :
8 does cross

What about corner cases? In the picture, the line from p actually goes through the edge of the
polygon, so the number of crossings is (mathematically) not well-defined. What should the
algorithm do in such cases? What about the literal corner case, where the line goes precisely
through a corner? (Ha ha hah.) I am not aware of any algorithm that deals properly with
these issues, as well as coping with finite-precision arithmetic.

p

13

Exercise 5.

q0

Exercise 6.

(a) deletes r2 as soon as it considers r3; this is the desired behaviour
(b) deletes r3 when it considers the next point, which is the desired behaviour (except that

if there is no next point, r3 will be included in the output, which is incorrect)
(c) like (a)
(d) the algorithm crashes in this case: it deletes r1 then has no “final segment” for com-

parison
(e) like (d) but even worse because we don’t actually want to delete r1
(f) like (d)

	A* algorithm
	Segment intersection
	Jarvis's march
	Graham's scan
	Solutions to exercises

