III. Approximation Algorithms: Covering Problems

(Update on Final Exercise Question)
Thomas Sauerwald

Exercise: Consider the vertex cover problem, restricted to a graph where every vertex has exactly 3 neighbours. Which approximation ratio can we obtain?

1. 1 (i.e., I can solve it exactly!!!)
2. 2
3. $11 / 6=2-1 / 6$
4. $H(n) \leq \log (n)$

Exercise: Consider the vertex cover problem, restricted to a graph where every vertex has exactly 3 neighbours. Which approximation ratio can we obtain?

1. 1 (i.e., I can solve it exactly!!!)
2. 2
3. $11 / 6=2-1 / 6$
4. $H(n) \leq \log (n)$

- Unfortunately, this question is not well formulated and a bit fuzzy. A better formulation might be:
Which approximation ratio can we obtain by a "simple" application of some of the results from the lectures on VERTEXCOVER and SET-COVER?

Exercise: Consider the vertex cover problem, restricted to a graph where every vertex has exactly 3 neighbours. Which approximation ratio can we obtain?

1. 1 (i.e., I can solve it exactly!!!)
2. 2
3. $11 / 6=2-1 / 6$
4. $H(n) \leq \log (n)$

Exercise: Consider the vertex cover problem, restricted to a graph where every vertex has exactly 3 neighbours. Which approximation ratio can we obtain?

1. 1 (i.e., I can solve it exactly!!!)
2. 2
3. $11 / 6=2-1 / 6$
4. $H(n) \leq \log (n)$

- Obviously, this natural (and more ambitious) question remains: What is the best possible approximation ratio for the vertex cover problem for graphs where every vertex has exactly 3 neighbours?

Exercise: Consider the vertex cover problem, restricted to a graph where every vertex has exactly 3 neighbours. Which approximation ratio can we obtain?

1. 1 (i.e., I can solve it exactly!!!)
2. 2
3. $11 / 6=2-1 / 6$
4. $H(n) \leq \log (n)$

- Obviously, this natural (and more ambitious) question remains: What is the best possible approximation ratio for the vertex cover problem for graphs where every vertex has exactly 3 neighbours?

Such graphs are called cubic graphs in the literature.

Some Research Articles on Vertex Cover on Cubic Graphs

- Vertex-Cover problem is NP-complete
M.R. Garey, D.S. Johnson, L. Stockmeyer. "Some simplified NP-complete graph problems", Theoretical Computer Science, Volume 1, Issue 3, Pages 237-267, 1976.
- A poly-time algorithm with approximation ratio 3/2 (based on 4-coloring)
D. Hochbaum. "Efficient Bounds for the Stable Set, Vertex Cover and Set Packing Problems", Discrete Applied Mathematics, Volume 6, pages 243-254, 1983.
- A poly-time algorithm with approximation ratio of $7 / 6+\epsilon$
P. Berman and T. Fujito. "On Approximation Properties of the Independent Set Problem for Low Degree Graphs", Theory of Computing Systems, Volume 32, pages 115-132, 1999.
- Impossibility of a PTAS (unless $P=N P$)
P. Alimonti and V. Kann. "Hardness of Approximating Problems on Cubic Graphs", Italian Conference on Algorithms and Algorithms, pages 288-298, 1997.

